forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Utils.h
123 lines (109 loc) · 4.8 KB
/
Utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#pragma once
#include <ATen/core/ATenGeneral.h>
#include <ATen/core/Generator.h>
#include <c10/core/StorageImpl.h>
#include <c10/core/UndefinedTensorImpl.h>
#include <c10/core/ScalarType.h>
#include <ATen/Formatting.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/Exception.h>
#include <algorithm>
#include <sstream>
#include <typeinfo>
#include <numeric>
#include <memory>
#define AT_DISALLOW_COPY_AND_ASSIGN(TypeName) \
TypeName(const TypeName&) = delete; \
void operator=(const TypeName&) = delete
namespace at {
CAFFE2_API int _crash_if_asan(int);
// TODO: This unwrapping code is ONLY used for TH bindings; once TH goes
// away, we can delete this function
static inline TensorImpl* checked_dense_tensor_unwrap(const Tensor& expr, const char * name, int pos, const char * api, bool allowNull, DeviceType device_type, ScalarType scalar_type) {
if(allowNull && !expr.defined()) {
return nullptr;
}
if (expr.layout() != Layout::Strided) {
AT_ERROR("Expected dense tensor but got ", expr.layout(),
" for argument #", pos, " '", name, "' in call to ", api);
}
if (expr.device().type() != device_type) {
AT_ERROR("Expected object of device type ", device_type, " but got device type ", expr.device().type(),
" for argument #", pos, " '", name, "' in call to ", api);
}
if (expr.scalar_type() != scalar_type) {
AT_ERROR("Expected object of scalar type ", scalar_type, " but got scalar type ", expr.scalar_type(),
" for argument #", pos, " '", name, "' in call to ", api);
}
return expr.unsafeGetTensorImpl();
}
// Converts a TensorList (i.e. ArrayRef<Tensor> to vector of TensorImpl*)
// NB: This is ONLY used by legacy TH bindings, and ONLY used by cat.
// Once cat is ported entirely to ATen this can be deleted!
static inline std::vector<TensorImpl*> checked_dense_tensor_list_unwrap(ArrayRef<Tensor> tensors, const char * name, int pos, DeviceType device_type, ScalarType scalar_type) {
std::vector<TensorImpl*> unwrapped;
unwrapped.reserve(tensors.size());
for (unsigned int i = 0; i < tensors.size(); ++i) {
const auto& expr = tensors[i];
if (expr.layout() != Layout::Strided) {
AT_ERROR("Expected dense tensor but got ", expr.layout(),
" for sequence element ", i , " in sequence argument at position #", pos, " '", name, "'");
}
if (expr.device().type() != device_type) {
AT_ERROR("Expected object of device type ", device_type, " but got device type ", expr.device().type(),
" for sequence element ", i , " in sequence argument at position #", pos, " '", name, "'");
}
if (expr.scalar_type() != scalar_type) {
AT_ERROR("Expected object of scalar type ", scalar_type, " but got scalar type ", expr.scalar_type(),
" for sequence element ", i , " in sequence argument at position #", pos, " '", name, "'");
}
unwrapped.emplace_back(expr.unsafeGetTensorImpl());
}
return unwrapped;
}
template <size_t N>
std::array<int64_t, N> check_intlist(ArrayRef<int64_t> list, const char * name, int pos) {
if (list.empty()) {
// TODO: is this necessary? We used to treat nullptr-vs-not in IntList differently
// with strides as a way of faking optional.
list = {};
}
auto res = std::array<int64_t, N>();
if (list.size() == 1 && N > 1) {
res.fill(list[0]);
return res;
}
if (list.size() != N) {
AT_ERROR("Expected a list of ", N, " ints but got ", list.size(), " for argument #", pos, " '", name, "'");
}
std::copy_n(list.begin(), N, res.begin());
return res;
}
inline int64_t sum_intlist(ArrayRef<int64_t> list) {
return std::accumulate(list.begin(), list.end(), 0ll);
}
inline int64_t prod_intlist(ArrayRef<int64_t> list) {
return std::accumulate(list.begin(), list.end(), 1ll, std::multiplies<int64_t>());
}
/**
* Utility function to static cast input Generator* to
* the backend generator type (CPU/CUDAGeneratorImpl etc.)
*/
template <typename T>
static inline T * check_generator(c10::optional<Generator> gen) {
TORCH_CHECK(gen.has_value(), "Expected Generator but received nullopt");
TORCH_CHECK(gen->defined(), "Generator with undefined implementation is not allowed");
TORCH_CHECK(T::device_type() == gen->device().type(), "Expected a '", T::device_type(), "' device type for generator but found '", gen->device().type(), "'");
return gen->get<T>();
}
/**
* Utility function used in tensor implementations, which
* supplies the default generator to tensors, if an input generator
* is not supplied. The input Generator* is also static casted to
* the backend generator type (CPU/CUDAGeneratorImpl etc.)
*/
template <typename T>
static inline T* get_generator_or_default(const c10::optional<Generator>& gen, const Generator& default_gen) {
return gen.has_value() && gen->defined() ? check_generator<T>(gen) : check_generator<T>(default_gen);
}
} // at