forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Distributions.cu
258 lines (235 loc) · 9.29 KB
/
Distributions.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#include <ATen/Dispatch.h>
#include <ATen/ExpandUtils.h>
#include <ATen/NativeFunctions.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/AccumulateType.h>
#include <ATen/CUDAGeneratorImpl.h>
#include <ATen/native/UnaryOps.h>
#include <ATen/native/cuda/DistributionTemplates.h>
#include <curand.h>
#include <curand_kernel.h>
#include <curand_philox4x32_x.h>
#include <utility>
#include <functional>
#include <ATen/native/Distributions.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/TensorIterator.h>
#include <ATen/LegacyTHFunctionsCUDA.h>
#include <THC/THCGeneral.h>
#include <THC/THCApply.cuh>
#include <THC/THCDeviceUtils.cuh>
#include <cstdint>
#include <limits>
#include <utility>
#include <type_traits>
/**
* Note [Register spilling in curand call for CUDA < 10]
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* For CUDA < 10, curandStatePhilox4_32_10_t engine achieves poor performance (60% SOL bandwidth)
* when called to generate one random number at a time. This is because the line
* unsigned ret = (&state->output.x)[state->STATE++];
* in
* QUALIFIERS unsigned int curand(curandStatePhilox4_32_10_t *state)
* in curand_kernel.h dynamically indexes into state.output, preventing the compiler from ever
* storing state.output in registers.
*
* CUDA 10 fixed this problem. However, for backwards compatibility, in the following kernels
* we are using curand distributions that utilize curand4 call. curand4 call doesn't have the
* register spilling problem.
*/
namespace {
template <typename scalar_t>
void poisson_cuda_kernel(
at::Tensor& ret,
const at::Tensor& lambda,
std::pair<uint64_t, uint64_t> seeds) {
at::cuda::CUDA_tensor_apply2<scalar_t, scalar_t>(
ret,
lambda,
[seeds] __device__(
scalar_t & ret_val, const scalar_t& lambda) {
curandStatePhilox4_32_10_t state;
curand_init(
seeds.first,
blockIdx.x * blockDim.x + threadIdx.x,
seeds.second,
&state);
ret_val = static_cast<scalar_t>(curand_poisson(&state, lambda));
});
}
struct curand_uniform_wrapper {
curandStatePhilox4_32_10_t &state;
__device__ curand_uniform_wrapper(curandStatePhilox4_32_10_t &state): state(state) {}
__device__ float operator()() {
return curand_uniform(&state);
}
};
template <typename scalar_t>
void binomial_cuda_kernel(
at::Tensor& ret,
const at::Tensor& count,
const at::Tensor& prob,
std::pair<uint64_t, uint64_t> seeds) {
using accscalar_t = at::acc_type<scalar_t, true>;
at::TensorIterator iter = at::TensorIteratorConfig()
.add_output(ret)
.add_input(count)
.add_input(prob)
.build();
at::native::distribution_binary_kernel(iter, seeds,
[seeds] GPU_LAMBDA (curandStatePhilox4_32_10_t& state, scalar_t count, scalar_t prob) {
#if defined(__CUDA_ARCH__) || defined(__HIP_PLATFORM_HCC__)
auto uniform_lambda = curand_uniform_wrapper(state);
BaseSampler<accscalar_t, decltype(uniform_lambda)> standard_uniform(uniform_lambda);
auto sample = sample_binomial<scalar_t, accscalar_t, decltype(uniform_lambda)>(count, prob, standard_uniform);
return static_cast<scalar_t>(sample);
#else
return count; // useless.
#endif
}
);
}
template <typename scalar_t>
void gamma_cuda_kernel(
at::Tensor& ret,
const at::Tensor& alpha,
std::pair<uint64_t, uint64_t> seeds) {
using accscalar_t = at::acc_type<scalar_t, true>;
at::cuda::CUDA_tensor_apply2<scalar_t, scalar_t>(
ret,
alpha,
[seeds] __device__(
scalar_t & ret_val, const scalar_t& alpha) {
curandStatePhilox4_32_10_t state;
curand_init(
seeds.first,
blockIdx.x * blockDim.x + threadIdx.x,
seeds.second,
&state);
auto uniform_lambda = [&state] __device__ () {
return curand_uniform(&state);
};
BaseSampler<accscalar_t, decltype(uniform_lambda)> standard_uniform(uniform_lambda);
auto normal_lambda = [&state] __device__ () {
return curand_normal(&state);
};
BaseSampler<accscalar_t, decltype(normal_lambda)> standard_normal(normal_lambda);
auto sample = sample_gamma<scalar_t, accscalar_t, decltype(uniform_lambda), decltype(normal_lambda)>(alpha, standard_uniform, standard_normal);
auto min_value = std::numeric_limits<scalar_t>::min();
ret_val = (min_value > sample) ? min_value : sample;
});
}
template<typename scalar_t>
void dirichlet_scalar_cuda_kernel(
at::Tensor& ret,
const at::Tensor& gamma) {
auto gamma_sum = gamma.sum(-1, true);
at::TensorIterator iter = at::TensorIteratorConfig()
.add_output(ret)
.add_input(gamma)
.add_input(gamma_sum)
.build();
at::native::gpu_kernel(iter,
[] GPU_LAMBDA (scalar_t gamma, scalar_t gamma_sum) {
auto ret_val = gamma / gamma_sum;
auto min_value = std::numeric_limits<scalar_t>::min();
auto max_value = 1 - std::numeric_limits<scalar_t>::epsilon();
ret_val = (min_value > ret_val) ? min_value : ret_val;
ret_val = (max_value < ret_val) ? max_value : ret_val;
return ret_val;
});
}
} // namespace
namespace at { namespace native {
Tensor _s_poisson_cuda(const Tensor& lambda, c10::optional<Generator> gen_) {
auto gen = get_generator_or_default<CUDAGeneratorImpl>(gen_, cuda::detail::getDefaultCUDAGenerator());
std::pair<uint64_t, uint64_t> rng_engine_inputs;
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
rng_engine_inputs = gen->philox_engine_inputs(20);
}
Tensor ret = at::empty(lambda.sizes(), lambda.options());
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, ret.scalar_type(), "poisson_cuda", [&] {
poisson_cuda_kernel<scalar_t>(ret, lambda, rng_engine_inputs);
});
return ret;
}
Tensor _s_binomial_cuda(const Tensor& count, const Tensor& prob, c10::optional<Generator> gen_) {
auto gen = get_generator_or_default<CUDAGeneratorImpl>(gen_, cuda::detail::getDefaultCUDAGenerator());
std::pair<uint64_t, uint64_t> rng_engine_inputs;
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
rng_engine_inputs = gen->philox_engine_inputs(42);
}
Tensor ret = at::empty(count.sizes(), count.options());
AT_DISPATCH_FLOATING_TYPES_AND_HALF(ret.scalar_type(), "binomial_cuda", [&] {
binomial_cuda_kernel<scalar_t>(ret, count, prob, rng_engine_inputs);
});
return ret;
}
Tensor _s_gamma_cuda(const Tensor& alpha, c10::optional<Generator> gen_) {
auto gen = get_generator_or_default<CUDAGeneratorImpl>(gen_, cuda::detail::getDefaultCUDAGenerator());
std::pair<uint64_t, uint64_t> rng_engine_inputs;
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
rng_engine_inputs = gen->philox_engine_inputs(10);
}
Tensor ret = at::empty(alpha.sizes(), alpha.options());
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, ret.scalar_type(), "gamma_cuda", [&] {
gamma_cuda_kernel<scalar_t>(ret, alpha, rng_engine_inputs);
});
return ret;
}
Tensor _s_dirichlet_cuda(const Tensor& alpha, c10::optional<Generator> gen_) {
auto gen = get_generator_or_default<CUDAGeneratorImpl>(gen_, cuda::detail::getDefaultCUDAGenerator());
std::pair<uint64_t, uint64_t> rng_engine_inputs;
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
rng_engine_inputs = gen->philox_engine_inputs(10);
}
Tensor ret = at::empty(alpha.sizes(), alpha.options());
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, ret.scalar_type(), "dirichlet", [&] {
Tensor gamma = at::empty(alpha.sizes(), alpha.options());
gamma_cuda_kernel<scalar_t>(gamma, alpha, rng_engine_inputs);
dirichlet_scalar_cuda_kernel<scalar_t>(ret, gamma);
});
return ret;
}
Tensor _standard_gamma_grad_cuda(const Tensor& self, const Tensor& output) {
Tensor ret = at::empty(self.sizes(), self.options());
TensorIterator iter = at::TensorIteratorConfig()
.add_output(ret)
.add_input(self)
.add_input(output)
.build();
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.common_dtype(), "_standard_gamma_grad_cuda", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
gpu_kernel(iter,
[] GPU_LAMBDA (scalar_t self_val, scalar_t output_val) {
return standard_gamma_grad_one<scalar_t, accscalar_t>(self_val, output_val);
});
});
return ret;
}
Tensor _dirichlet_grad_cuda(const Tensor& x, const Tensor& alpha, const Tensor& total) {
Tensor ret = at::empty(x.sizes(), x.options());
TensorIterator iter = at::TensorIteratorConfig()
.add_output(ret)
.add_input(x)
.add_input(alpha)
.add_input(total)
.build();
AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "_dirichlet_grad_cuda", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
gpu_kernel(iter,
[] GPU_LAMBDA (scalar_t x_val, scalar_t alpha_val, scalar_t total_val) -> scalar_t {
return dirichlet_grad_one<scalar_t, accscalar_t>(x_val, alpha_val, total_val);
});
});
return ret;
}
}} // namespace at::native