forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
net_drawer.py
412 lines (368 loc) · 14.1 KB
/
net_drawer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
## @package net_drawer
# Module caffe2.python.net_drawer
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import json
import logging
from collections import defaultdict
from caffe2.python import utils
from future.utils import viewitems
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
try:
import pydot
except ImportError:
logger.info(
'Cannot import pydot, which is required for drawing a network. This '
'can usually be installed in python with "pip install pydot". Also, '
'pydot requires graphviz to convert dot files to pdf: in ubuntu, this '
'can usually be installed with "sudo apt-get install graphviz".'
)
print(
'net_drawer will not run correctly. Please install the correct '
'dependencies.'
)
pydot = None
from caffe2.proto import caffe2_pb2
OP_STYLE = {
'shape': 'box',
'color': '#0F9D58',
'style': 'filled',
'fontcolor': '#FFFFFF'
}
BLOB_STYLE = {'shape': 'octagon'}
def _rectify_operator_and_name(operators_or_net, name):
"""Gets the operators and name for the pydot graph."""
if isinstance(operators_or_net, caffe2_pb2.NetDef):
operators = operators_or_net.op
if name is None:
name = operators_or_net.name
elif hasattr(operators_or_net, 'Proto'):
net = operators_or_net.Proto()
if not isinstance(net, caffe2_pb2.NetDef):
raise RuntimeError(
"Expecting NetDef, but got {}".format(type(net)))
operators = net.op
if name is None:
name = net.name
else:
operators = operators_or_net
if name is None:
name = "unnamed"
return operators, name
def _escape_label(name):
# json.dumps is poor man's escaping
return json.dumps(name)
def GetOpNodeProducer(append_output, **kwargs):
def ReallyGetOpNode(op, op_id):
if op.name:
node_name = '%s/%s (op#%d)' % (op.name, op.type, op_id)
else:
node_name = '%s (op#%d)' % (op.type, op_id)
if append_output:
for output_name in op.output:
node_name += '\n' + output_name
return pydot.Node(node_name, **kwargs)
return ReallyGetOpNode
def GetBlobNodeProducer(**kwargs):
def ReallyGetBlobNode(node_name, label):
return pydot.Node(node_name, label=label, **kwargs)
return ReallyGetBlobNode
def GetPydotGraph(
operators_or_net,
name=None,
rankdir='LR',
op_node_producer=None,
blob_node_producer=None
):
if op_node_producer is None:
op_node_producer = GetOpNodeProducer(False, **OP_STYLE)
if blob_node_producer is None:
blob_node_producer = GetBlobNodeProducer(**BLOB_STYLE)
operators, name = _rectify_operator_and_name(operators_or_net, name)
graph = pydot.Dot(name, rankdir=rankdir)
pydot_nodes = {}
pydot_node_counts = defaultdict(int)
for op_id, op in enumerate(operators):
op_node = op_node_producer(op, op_id)
graph.add_node(op_node)
# print 'Op: %s' % op.name
# print 'inputs: %s' % str(op.input)
# print 'outputs: %s' % str(op.output)
for input_name in op.input:
if input_name not in pydot_nodes:
input_node = blob_node_producer(
_escape_label(
input_name + str(pydot_node_counts[input_name])),
label=_escape_label(input_name),
)
pydot_nodes[input_name] = input_node
else:
input_node = pydot_nodes[input_name]
graph.add_node(input_node)
graph.add_edge(pydot.Edge(input_node, op_node))
for output_name in op.output:
if output_name in pydot_nodes:
# we are overwriting an existing blob. need to update the count.
pydot_node_counts[output_name] += 1
output_node = blob_node_producer(
_escape_label(
output_name + str(pydot_node_counts[output_name])),
label=_escape_label(output_name),
)
pydot_nodes[output_name] = output_node
graph.add_node(output_node)
graph.add_edge(pydot.Edge(op_node, output_node))
return graph
def GetPydotGraphMinimal(
operators_or_net,
name=None,
rankdir='LR',
minimal_dependency=False,
op_node_producer=None,
):
"""Different from GetPydotGraph, hide all blob nodes and only show op nodes.
If minimal_dependency is set as well, for each op, we will only draw the
edges to the minimal necessary ancestors. For example, if op c depends on
op a and b, and op b depends on a, then only the edge b->c will be drawn
because a->c will be implied.
"""
if op_node_producer is None:
op_node_producer = GetOpNodeProducer(False, **OP_STYLE)
operators, name = _rectify_operator_and_name(operators_or_net, name)
graph = pydot.Dot(name, rankdir=rankdir)
# blob_parents maps each blob name to its generating op.
blob_parents = {}
# op_ancestry records the ancestors of each op.
op_ancestry = defaultdict(set)
for op_id, op in enumerate(operators):
op_node = op_node_producer(op, op_id)
graph.add_node(op_node)
# Get parents, and set up op ancestry.
parents = [
blob_parents[input_name] for input_name in op.input
if input_name in blob_parents
]
op_ancestry[op_node].update(parents)
for node in parents:
op_ancestry[op_node].update(op_ancestry[node])
if minimal_dependency:
# only add nodes that do not have transitive ancestry
for node in parents:
if all(
[node not in op_ancestry[other_node]
for other_node in parents]
):
graph.add_edge(pydot.Edge(node, op_node))
else:
# Add all parents to the graph.
for node in parents:
graph.add_edge(pydot.Edge(node, op_node))
# Update blob_parents to reflect that this op created the blobs.
for output_name in op.output:
blob_parents[output_name] = op_node
return graph
def GetOperatorMapForPlan(plan_def):
operator_map = {}
for net_id, net in enumerate(plan_def.network):
if net.HasField('name'):
operator_map[plan_def.name + "_" + net.name] = net.op
else:
operator_map[plan_def.name + "_network_%d" % net_id] = net.op
return operator_map
def _draw_nets(nets, g):
nodes = []
for i, net in enumerate(nets):
nodes.append(pydot.Node(_escape_label(net)))
g.add_node(nodes[-1])
if i > 0:
g.add_edge(pydot.Edge(nodes[-2], nodes[-1]))
return nodes
def _draw_steps(steps, g, skip_step_edges=False): # noqa
kMaxParallelSteps = 3
def get_label():
label = [step.name + '\n']
if step.report_net:
label.append('Reporter: {}'.format(step.report_net))
if step.should_stop_blob:
label.append('Stopper: {}'.format(step.should_stop_blob))
if step.concurrent_substeps:
label.append('Concurrent')
if step.only_once:
label.append('Once')
return '\n'.join(label)
def substep_edge(start, end):
return pydot.Edge(start, end, arrowhead='dot', style='dashed')
nodes = []
for i, step in enumerate(steps):
parallel = step.concurrent_substeps
nodes.append(pydot.Node(_escape_label(get_label()), **OP_STYLE))
g.add_node(nodes[-1])
if i > 0 and not skip_step_edges:
g.add_edge(pydot.Edge(nodes[-2], nodes[-1]))
if step.network:
sub_nodes = _draw_nets(step.network, g)
elif step.substep:
if parallel:
sub_nodes = _draw_steps(
step.substep[:kMaxParallelSteps], g, skip_step_edges=True)
else:
sub_nodes = _draw_steps(step.substep, g)
else:
raise ValueError('invalid step')
if parallel:
for sn in sub_nodes:
g.add_edge(substep_edge(nodes[-1], sn))
if len(step.substep) > kMaxParallelSteps:
ellipsis = pydot.Node('{} more steps'.format(
len(step.substep) - kMaxParallelSteps), **OP_STYLE)
g.add_node(ellipsis)
g.add_edge(substep_edge(nodes[-1], ellipsis))
else:
g.add_edge(substep_edge(nodes[-1], sub_nodes[0]))
return nodes
def GetPlanGraph(plan_def, name=None, rankdir='TB'):
graph = pydot.Dot(name, rankdir=rankdir)
_draw_steps(plan_def.execution_step, graph)
return graph
def GetGraphInJson(operators_or_net, output_filepath):
operators, _ = _rectify_operator_and_name(operators_or_net, None)
blob_strid_to_node_id = {}
node_name_counts = defaultdict(int)
nodes = []
edges = []
for op_id, op in enumerate(operators):
op_label = op.name + '/' + op.type if op.name else op.type
op_node_id = len(nodes)
nodes.append({
'id': op_node_id,
'label': op_label,
'op_id': op_id,
'type': 'op'
})
for input_name in op.input:
strid = _escape_label(
input_name + str(node_name_counts[input_name]))
if strid not in blob_strid_to_node_id:
input_node = {
'id': len(nodes),
'label': input_name,
'type': 'blob'
}
blob_strid_to_node_id[strid] = len(nodes)
nodes.append(input_node)
else:
input_node = nodes[blob_strid_to_node_id[strid]]
edges.append({
'source': blob_strid_to_node_id[strid],
'target': op_node_id
})
for output_name in op.output:
strid = _escape_label(
output_name + str(node_name_counts[output_name]))
if strid in blob_strid_to_node_id:
# we are overwriting an existing blob. need to update the count.
node_name_counts[output_name] += 1
strid = _escape_label(
output_name + str(node_name_counts[output_name]))
if strid not in blob_strid_to_node_id:
output_node = {
'id': len(nodes),
'label': output_name,
'type': 'blob'
}
blob_strid_to_node_id[strid] = len(nodes)
nodes.append(output_node)
edges.append({
'source': op_node_id,
'target': blob_strid_to_node_id[strid]
})
with open(output_filepath, 'w') as f:
json.dump({'nodes': nodes, 'edges': edges}, f)
# A dummy minimal PNG image used by GetGraphPngSafe as a
# placeholder when rendering fail to run.
_DummyPngImage = (
b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00\x00'
b'\x01\x01\x00\x00\x00\x007n\xf9$\x00\x00\x00\nIDATx\x9cc`\x00\x00'
b'\x00\x02\x00\x01H\xaf\xa4q\x00\x00\x00\x00IEND\xaeB`\x82')
def GetGraphPngSafe(func, *args, **kwargs):
"""
Invokes `func` (e.g. GetPydotGraph) with args. If anything fails - returns
and empty image instead of throwing Exception
"""
try:
graph = func(*args, **kwargs)
if not isinstance(graph, pydot.Dot):
raise ValueError("func is expected to return pydot.Dot")
return graph.create_png()
except Exception as e:
logger.error("Failed to draw graph: {}".format(e))
return _DummyPngImage
def main():
parser = argparse.ArgumentParser(description="Caffe2 net drawer.")
parser.add_argument(
"--input",
type=str, required=True,
help="The input protobuf file."
)
parser.add_argument(
"--output_prefix",
type=str, default="",
help="The prefix to be added to the output filename."
)
parser.add_argument(
"--minimal", action="store_true",
help="If set, produce a minimal visualization."
)
parser.add_argument(
"--minimal_dependency", action="store_true",
help="If set, only draw minimal dependency."
)
parser.add_argument(
"--append_output", action="store_true",
help="If set, append the output blobs to the operator names.")
parser.add_argument(
"--rankdir", type=str, default="LR",
help="The rank direction of the pydot graph."
)
args = parser.parse_args()
with open(args.input, 'r') as fid:
content = fid.read()
graphs = utils.GetContentFromProtoString(
content, {
caffe2_pb2.PlanDef: lambda x: GetOperatorMapForPlan(x),
caffe2_pb2.NetDef: lambda x: {x.name: x.op},
}
)
for key, operators in viewitems(graphs):
if args.minimal:
graph = GetPydotGraphMinimal(
operators,
name=key,
rankdir=args.rankdir,
node_producer=GetOpNodeProducer(args.append_output, **OP_STYLE),
minimal_dependency=args.minimal_dependency)
else:
graph = GetPydotGraph(
operators,
name=key,
rankdir=args.rankdir,
node_producer=GetOpNodeProducer(args.append_output, **OP_STYLE))
filename = args.output_prefix + graph.get_name() + '.dot'
graph.write(filename, format='raw')
pdf_filename = filename[:-3] + 'pdf'
try:
graph.write_pdf(pdf_filename)
except Exception:
print(
'Error when writing out the pdf file. Pydot requires graphviz '
'to convert dot files to pdf, and you may not have installed '
'graphviz. On ubuntu this can usually be installed with "sudo '
'apt-get install graphviz". We have generated the .dot file '
'but will not be able to generate pdf file for now.'
)
if __name__ == '__main__':
main()