forked from GoGoDuck912/Self-Correction-Human-Parsing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
231 lines (192 loc) · 9.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@Author : Peike Li
@Contact : peike.li@yahoo.com
@File : train.py
@Time : 8/4/19 3:36 PM
@Desc :
@License : This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os
import json
import timeit
import argparse
import torch
import torch.optim as optim
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
from torch.utils import data
import networks
import utils.schp as schp
from datasets.datasets import LIPDataSet
from datasets.target_generation import generate_edge_tensor
from utils.transforms import BGR2RGB_transform
from utils.criterion import CriterionAll
from utils.encoding import DataParallelModel, DataParallelCriterion
from utils.warmup_scheduler import SGDRScheduler
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Self Correction for Human Parsing")
# Network Structure
parser.add_argument("--arch", type=str, default='resnet101')
# Data Preference
parser.add_argument("--data-dir", type=str, default='./data/LIP')
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--input-size", type=str, default='473,473')
parser.add_argument("--num-classes", type=int, default=20)
parser.add_argument("--ignore-label", type=int, default=255)
parser.add_argument("--random-mirror", action="store_true")
parser.add_argument("--random-scale", action="store_true")
# Training Strategy
parser.add_argument("--learning-rate", type=float, default=7e-3)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--weight-decay", type=float, default=5e-4)
parser.add_argument("--gpu", type=str, default='0,1,2')
parser.add_argument("--start-epoch", type=int, default=0)
parser.add_argument("--epochs", type=int, default=150)
parser.add_argument("--eval-epochs", type=int, default=10)
parser.add_argument("--imagenet-pretrain", type=str, default='./pretrain_model/resnet101-imagenet.pth')
parser.add_argument("--log-dir", type=str, default='./log')
parser.add_argument("--model-restore", type=str, default='./log/checkpoint.pth.tar')
parser.add_argument("--schp-start", type=int, default=100, help='schp start epoch')
parser.add_argument("--cycle-epochs", type=int, default=10, help='schp cyclical epoch')
parser.add_argument("--schp-restore", type=str, default='./log/schp_checkpoint.pth.tar')
parser.add_argument("--lambda-s", type=float, default=1, help='segmentation loss weight')
parser.add_argument("--lambda-e", type=float, default=1, help='edge loss weight')
parser.add_argument("--lambda-c", type=float, default=0.1, help='segmentation-edge consistency loss weight')
return parser.parse_args()
def main():
args = get_arguments()
print(args)
start_epoch = 0
cycle_n = 0
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
with open(os.path.join(args.log_dir, 'args.json'), 'w') as opt_file:
json.dump(vars(args), opt_file)
gpus = [int(i) for i in args.gpu.split(',')]
if not args.gpu == 'None':
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
input_size = list(map(int, args.input_size.split(',')))
cudnn.enabled = True
cudnn.benchmark = True
# Model Initialization
AugmentCE2P = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=args.imagenet_pretrain)
model = DataParallelModel(AugmentCE2P)
model.cuda()
IMAGE_MEAN = AugmentCE2P.mean
IMAGE_STD = AugmentCE2P.std
INPUT_SPACE = AugmentCE2P.input_space
print('image mean: {}'.format(IMAGE_MEAN))
print('image std: {}'.format(IMAGE_STD))
print('input space:{}'.format(INPUT_SPACE))
restore_from = args.model_restore
if os.path.exists(restore_from):
print('Resume training from {}'.format(restore_from))
checkpoint = torch.load(restore_from)
model.load_state_dict(checkpoint['state_dict'])
start_epoch = checkpoint['epoch']
SCHP_AugmentCE2P = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=args.imagenet_pretrain)
schp_model = DataParallelModel(SCHP_AugmentCE2P)
schp_model.cuda()
if os.path.exists(args.schp_restore):
print('Resuming schp checkpoint from {}'.format(args.schp_restore))
schp_checkpoint = torch.load(args.schp_restore)
schp_model_state_dict = schp_checkpoint['state_dict']
cycle_n = schp_checkpoint['cycle_n']
schp_model.load_state_dict(schp_model_state_dict)
# Loss Function
criterion = CriterionAll(lambda_1=args.lambda_s, lambda_2=args.lambda_e, lambda_3=args.lambda_c,
num_classes=args.num_classes)
criterion = DataParallelCriterion(criterion)
criterion.cuda()
# Data Loader
if INPUT_SPACE == 'BGR':
print('BGR Transformation')
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=IMAGE_MEAN,
std=IMAGE_STD),
])
elif INPUT_SPACE == 'RGB':
print('RGB Transformation')
transform = transforms.Compose([
transforms.ToTensor(),
BGR2RGB_transform(),
transforms.Normalize(mean=IMAGE_MEAN,
std=IMAGE_STD),
])
train_dataset = LIPDataSet(args.data_dir, 'train', crop_size=input_size, transform=transform)
train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size * len(gpus),
num_workers=16, shuffle=True, pin_memory=True, drop_last=True)
print('Total training samples: {}'.format(len(train_dataset)))
# Optimizer Initialization
optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=args.momentum,
weight_decay=args.weight_decay)
lr_scheduler = SGDRScheduler(optimizer, total_epoch=args.epochs,
eta_min=args.learning_rate / 100, warmup_epoch=10,
start_cyclical=args.schp_start, cyclical_base_lr=args.learning_rate / 2,
cyclical_epoch=args.cycle_epochs)
total_iters = args.epochs * len(train_loader)
start = timeit.default_timer()
for epoch in range(start_epoch, args.epochs):
lr_scheduler.step(epoch=epoch)
lr = lr_scheduler.get_lr()[0]
model.train()
for i_iter, batch in enumerate(train_loader):
i_iter += len(train_loader) * epoch
images, labels, _ = batch
labels = labels.cuda(non_blocking=True)
edges = generate_edge_tensor(labels)
labels = labels.type(torch.cuda.LongTensor)
edges = edges.type(torch.cuda.LongTensor)
preds = model(images)
# Online Self Correction Cycle with Label Refinement
if cycle_n >= 1:
with torch.no_grad():
soft_preds = schp_model(images)
soft_parsing = []
soft_edge = []
for soft_pred in soft_preds:
soft_parsing.append(soft_pred[0][-1])
soft_edge.append(soft_pred[1][-1])
soft_preds = torch.cat(soft_parsing, dim=0)
soft_edges = torch.cat(soft_edge, dim=0)
else:
soft_preds = None
soft_edges = None
loss = criterion(preds, [labels, edges, soft_preds, soft_edges], cycle_n)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i_iter % 100 == 0:
print('iter = {} of {} completed, lr = {}, loss = {}'.format(i_iter, total_iters, lr,
loss.data.cpu().numpy()))
if (epoch + 1) % (args.eval_epochs) == 0:
schp.save_schp_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
}, False, args.log_dir, filename='checkpoint_{}.pth.tar'.format(epoch + 1))
# Self Correction Cycle with Model Aggregation
if (epoch + 1) >= args.schp_start and (epoch + 1 - args.schp_start) % args.cycle_epochs == 0:
print('Self-correction cycle number {}'.format(cycle_n))
schp.moving_average(schp_model, model, 1.0 / (cycle_n + 1))
cycle_n += 1
schp.bn_re_estimate(train_loader, schp_model)
schp.save_schp_checkpoint({
'state_dict': schp_model.state_dict(),
'cycle_n': cycle_n,
}, False, args.log_dir, filename='schp_{}_checkpoint.pth.tar'.format(cycle_n))
torch.cuda.empty_cache()
end = timeit.default_timer()
print('epoch = {} of {} completed using {} s'.format(epoch, args.epochs,
(end - start) / (epoch - start_epoch + 1)))
end = timeit.default_timer()
print('Training Finished in {} seconds'.format(end - start))
if __name__ == '__main__':
main()