-
Notifications
You must be signed in to change notification settings - Fork 2
/
darknet_video_yolo.py
182 lines (152 loc) · 5.71 KB
/
darknet_video_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from ctypes import *
import math
import random
import os
import cv2
import numpy as np
import time
import darknet
import pyzed.sl as sl
def convertBack(x, y, w, h):
xmin = int(round(x - (w / 2)))
xmax = int(round(x + (w / 2)))
ymin = int(round(y - (h / 2)))
ymax = int(round(y + (h / 2)))
return xmin, ymin, xmax, ymax
def get_object_depth(depth, bounds):
'''
Calculates the median x, y, z position of top slice(area_div) of point cloud
in camera frame.
Arguments:
depth: Point cloud data of whole frame.
bounds: Bounding box for object in pixels.
bounds[0]: x-center
bounds[1]: y-center
bounds[2]: width of bounding box.
bounds[3]: height of bounding box.
Return:
x, y, z: Location of object in meters.
'''
area_div = 2
x_vect = []
y_vect = []
z_vect = []
for j in range(int(bounds[0] - area_div), int(bounds[0] + area_div)):
for i in range(int(bounds[1] - area_div), int(bounds[1] + area_div)):
z = depth[i, j, 2]
if not np.isnan(z) and not np.isinf(z):
x_vect.append(depth[i, j, 0])
y_vect.append(depth[i, j, 1])
z_vect.append(z)
try:
x_median = statistics.median(x_vect)
y_median = statistics.median(y_vect)
z_median = statistics.median(z_vect)
except Exception:
x_median = -1
y_median = -1
z_median = -1
pass
return x_median, y_median, z_median
def cvDrawBoxes(detections, img,distance):
for detection in detections:
x, y, w, h = detection[2][0],\
detection[2][1],\
detection[2][2],\
detection[2][3]
xmin, ymin, xmax, ymax = convertBack(
float(x), float(y), float(w), float(h))
pt1 = (xmin, ymin)
pt2 = (xmax, ymax)
thickness = 1
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 1)
'''
cv2.putText(img, (str(distance) + " m"),
(pt1[0] + (thickness * 4), pt1[1] + (10 + thickness * 4)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) '''
return img
netMain = None
metaMain = None
altNames = None
def YOLO():
global metaMain, netMain, altNames
zed_id = 0
configPath = "./cfg/yolov4.cfg"
weightPath = "./yolov4.weights"
metaPath = "./cfg/coco.data"
input_type = sl.InputType()
# Launch camera by id
input_type.set_from_camera_id(zed_id)
init = sl.InitParameters(input_t=input_type)
init.coordinate_units = sl.UNIT.METER
cam = sl.Camera()
status = cam.open(init)
runtime = sl.RuntimeParameters()
# Use STANDARD sensing mode
runtime.sensing_mode = sl.SENSING_MODE.STANDARD
mat = sl.Mat()
point_cloud_mat = sl.Mat()
if not os.path.exists(configPath):
raise ValueError("Invalid config path `" +
os.path.abspath(configPath)+"`")
if not os.path.exists(weightPath):
raise ValueError("Invalid weight path `" +
os.path.abspath(weightPath)+"`")
if not os.path.exists(metaPath):
raise ValueError("Invalid data file path `" +
os.path.abspath(metaPath)+"`")
if netMain is None:
netMain = darknet.load_net_custom(configPath.encode(
"ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1
if metaMain is None:
metaMain = darknet.load_meta(metaPath.encode("ascii"))
if altNames is None:
try:
with open(metaPath) as metaFH:
metaContents = metaFH.read()
import re
match = re.search("names *= *(.*)$", metaContents,
re.IGNORECASE | re.MULTILINE)
if match:
result = match.group(1)
else:
result = None
try:
if os.path.exists(result):
with open(result) as namesFH:
namesList = namesFH.read().strip().split("\n")
altNames = [x.strip() for x in namesList]
except TypeError:
pass
except Exception:
pass
print("Starting the YOLO loop...")
darknet_image = darknet.make_image(darknet.network_width(netMain),
darknet.network_height(netMain),3)
while True:
prev_time = time.time()
err = cam.grab(runtime)
cam.retrieve_image(mat, sl.VIEW.LEFT)
frame_read = mat.get_data()
cam.retrieve_measure(point_cloud_mat, sl.MEASURE.XYZRGBA)
depth = point_cloud_mat.get_data()
frame_rgb = cv2.cvtColor(frame_read, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb,
(darknet.network_width(netMain),
darknet.network_height(netMain)),
interpolation=cv2.INTER_LINEAR)
darknet.copy_image_from_bytes(darknet_image,frame_resized.tobytes())
detections = darknet.detect_image(netMain, metaMain, darknet_image, thresh=0.25)
bounds = detections[1]
print(bounds)
x, y, z = get_object_depth(depth, bounds)
x_coord = int(bounds[0] - bounds[2]/2)
y_coord = int(bounds[1] - bounds[3]/2)
distance = math.sqrt(x * x + y * y + z * z)
#distance = "{:.2f}".format(distance)
image = cvDrawBoxes(detections, frame_resized,distance)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
cv2.imshow('Demo', image)
cv2.waitKey(3)
if __name__ == "__main__":
YOLO()