diff --git a/proglearn/forest.py b/proglearn/forest.py index 55fd314971..0821cbe058 100644 --- a/proglearn/forest.py +++ b/proglearn/forest.py @@ -22,18 +22,24 @@ class LifelongClassificationForest(ClassificationProgressiveLearner): tree. The remainder of the data is used to fill in voting posteriors. This is used if 'tree_construction_proportion' is not fed to add_task. default_finite_sample_correction : bool, default=False - Boolean indicating whether this learner will have finite sample correction + Boolean indicating whether this learner will have finite sample correction. This is used if 'finite_sample_correction' is not fed to add_task. + default_max_depth : int, default=30 + The maximum depth of a tree in the Lifelong Classification Forest. + This is used if 'max_depth' is not fed to add_task. Methods --- - add_task(X, y, task_id) - adds a task with id task_id, given input data matrix X - and output data matrix y, to the Lifelong Classification Forest - add_transformer(X, y, transformer_id) - adds a transformer with id transformer_id, trained on given input data matrix, X - and output data matrix, y, to the Lifelong Classification Forest. Also - trains the voters and deciders from new transformer to previous tasks, and will + add_task(X, y, task_id, tree_construction_proportion, finite_sample_correction, max_depth) + adds a task with id task_id, max tree depth max_depth, given input data matrix X + and output data matrix y, to the Lifelong Classification Forest. Also splits + data for training and voting based on tree_construction_proportion and uses the + value of finite_sample_correction to determine whether the learner will have + finite sample correction. + add_transformer(X, y, transformer_id, max_depth) + adds a transformer with id transformer_id and max tree depth max_depth, trained on + given input data matrix, X, and output data matrix, y, to the Lifelong Classification Forest. + Also trains the voters and deciders from new transformer to previous tasks, and will train voters and deciders from this transformer to all new tasks. predict(X, task_id) predicts class labels under task_id for each example in input data X. @@ -46,10 +52,12 @@ def __init__( n_estimators=100, default_tree_construction_proportion=0.67, default_finite_sample_correction=False, + default_max_depth=30, ): self.n_estimators = n_estimators self.default_tree_construction_proportion = default_tree_construction_proportion self.default_finite_sample_correction = default_finite_sample_correction + self.default_max_depth = default_max_depth self.pl = ClassificationProgressiveLearner( default_transformer_class=TreeClassificationTransformer, default_transformer_kwargs={}, @@ -68,10 +76,14 @@ def add_task( task_id=None, tree_construction_proportion=None, finite_sample_correction=None, + max_depth=None, ): """ - adds a task with id task_id, given input data matrix X - and output data matrix y, to the Lifelong Classification Forest + adds a task with id task_id, max tree depth max_depth, given input data matrix X + and output data matrix y, to the Lifelong Classification Forest. Also splits + data for training and voting based on tree_construction_proportion and uses the + value of finite_sample_correction to determine whether the learner will have + finite sample correction. Parameters --- @@ -86,13 +98,18 @@ def add_task( tree. The remainder of the data is used to fill in voting posteriors. The default is used if 'None' is provided. finite_sample_correction : bool, default=False - Boolean indicating whether this learner will have finite sample correction + Boolean indicating whether this learner will have finite sample correction. + The default is used if 'None' is provided. + max_depth : int, default=30 + The maximum depth of a tree in the Lifelong Classification Forest. The default is used if 'None' is provided. """ if tree_construction_proportion is None: tree_construction_proportion = self.default_tree_construction_proportion if finite_sample_correction is None: finite_sample_correction = self.default_finite_sample_correction + if max_depth is None: + max_depth = self.default_max_depth self.pl.add_task( X, @@ -104,6 +121,7 @@ def add_task( 0, ], num_transformers=self.n_estimators, + transformer_kwargs={"kwargs": {"max_depth": max_depth}}, voter_kwargs={ "classes": np.unique(y), "finite_sample_correction": finite_sample_correction, @@ -112,11 +130,11 @@ def add_task( ) return self - def add_transformer(self, X, y, transformer_id=None): + def add_transformer(self, X, y, transformer_id=None, max_depth=None): """ - adds a transformer with id transformer_id, trained on given input data matrix, X - and output data matrix, y, to the Lifelong Classification Forest. Also - trains the voters and deciders from new transformer to previous tasks, and will + adds a transformer with id transformer_id and max tree depth max_depth, trained on + given input data matrix, X, and output data matrix, y, to the Lifelong Classification Forest. + Also trains the voters and deciders from new transformer to previous tasks, and will train voters and deciders from this transformer to all new tasks. Parameters @@ -127,10 +145,17 @@ def add_transformer(self, X, y, transformer_id=None): The output (response) data matrix. transformer_id : obj, default=None The id corresponding to the transformer being added. + max_depth : int, default=30 + The maximum depth of a tree in the UncertaintyForest. + The default is used if 'None' is provided. """ + if max_depth is None: + max_depth = self.default_max_depth + self.pl.add_transformer( X, y, + transformer_kwargs={"kwargs": {"max_depth": max_depth}}, transformer_id=transformer_id, num_transformers=self.n_estimators, ) @@ -172,11 +197,13 @@ class UncertaintyForest: --- lf : LifelongClassificationForest A lifelong classification forest object - n_estimators : int + n_estimators : int, default=100 The number of trees in the UncertaintyForest - finite_sample_correction : bool + finite_sample_correction : bool, default=False Boolean indicating whether this learner will use finite sample correction + max_depth : int, default=30 + The maximum depth of a tree in the UncertaintyForest Methods --- @@ -188,9 +215,10 @@ class UncertaintyForest: estimates class posteriors for each example in input data X. """ - def __init__(self, n_estimators=100, finite_sample_correction=False): + def __init__(self, n_estimators=100, finite_sample_correction=False, max_depth=30): self.n_estimators = n_estimators self.finite_sample_correction = finite_sample_correction + self.max_depth = max_depth def fit(self, X, y): """ @@ -206,6 +234,7 @@ def fit(self, X, y): self.lf = LifelongClassificationForest( n_estimators=self.n_estimators, default_finite_sample_correction=self.finite_sample_correction, + default_max_depth=max_depth, ) self.lf.add_task(X, y, task_id=0) return self diff --git a/tutorials/rotation_cifar.ipynb b/tutorials/rotation_cifar.ipynb index 611c7deed8..beb4d4fbaa 100644 --- a/tutorials/rotation_cifar.ipynb +++ b/tutorials/rotation_cifar.ipynb @@ -149,6 +149,8 @@ " network.add(layers.Dense(2000, activation='relu'))\n", " network.add(layers.BatchNormalization())\n", " network.add(layers.Dense(units=10, activation = 'softmax'))\n", + " \n", + " return (train_x1, test_x, tmp_data, network)\n", "\n", " # Lifelong Classification Forest model is used as transformer\n", " elif model == \"lf\":\n", @@ -159,7 +161,7 @@ " tmp_data = tmp_data.reshape((tmp_data.shape[0], tmp_data.shape[1] * tmp_data.shape[2] * tmp_data.shape[3]))\n", " test_x = test_x.reshape((test_x.shape[0], test_x.shape[1] * test_x.shape[2] * test_x.shape[3]))\n", " \n", - " return (train_x1, test_x, tmp_data, network)" + " return (train_x1, test_x, tmp_data)" ] }, { @@ -169,7 +171,7 @@ "outputs": [], "source": [ "# Runs the experiments\n", - "def LF_experiment(data_x, data_y, angle, model, granularity, reps=1, ntrees=29, acorn=None):\n", + "def LF_experiment(data_x, data_y, angle, model, granularity, max_depth, reps=1, ntrees=29, acorn=None):\n", " \n", " # Set random seed to acorn if acorn is specified\n", " if acorn is not None:\n", @@ -193,14 +195,15 @@ " tmp_ = image_aug(tmp_data[i],angle)\n", " # 2D image is flattened into a 1D array as random forests can only take in flattened images as inputs\n", " tmp_data[i] = tmp_\n", - " \n", - " # Call function to choose model for transformer\n", - " (train_x1, test_x, tmp_data, network) = choose_transformer(train_x1, test_x, test_y, tmp_data)\n", " \n", " if model == \"lf\": # random forests\n", + " # Call function to choose model for transformer\n", + " (train_x1, test_x, tmp_data) = choose_transformer(train_x1, test_x, test_y, tmp_data)\n", " # number of trees (estimators) to use is passed as an argument because the default is 100 estimators\n", - " progressive_learner = LifelongClassificationForest(n_estimators = ntrees)\n", + " progressive_learner = LifelongClassificationForest(n_estimators = ntrees, default_max_depth = max_depth)\n", " elif model == \"dnn\": # deep net\n", + " # Call function to choose model for transformer\n", + " (train_x1, test_x, tmp_data, network) = choose_transformer(train_x1, test_x, test_y, tmp_data)\n", " # network is passed as an argument so that LifelongClassificationNetwork knows which transformer network to use\n", " progressive_learner = LifelongClassificationNetwork(network = network)\n", "\n", @@ -263,7 +266,9 @@ "\n", "`granularity` refers to the amount by which the angle will be increased each time. Setting this value at 1 will cause the algorithm to test every whole number rotation angle between 0 and 180 degrees.\n", "\n", - "`reps` refers to the number of repetitions tested for each angle of rotation. For each repetition, the data is randomly resampled/" + "`reps` refers to the number of repetitions tested for each angle of rotation. For each repetition, the data is randomly resampled.\n", + "\n", + "`max_depth` refers to the maximum depth of each tree in the Lifelong Classification Forest. If this value is not specified, LifelongClassificationForest defaults to a max tree depth of 30." ] }, { @@ -274,8 +279,9 @@ "source": [ "### MAIN HYPERPARAMS ###\n", "model = \"lf\"\n", - "granularity = 12\n", - "reps = 100\n", + "granularity = 45\n", + "reps = 75\n", + "max_depth = 5\n", "########################" ] }, @@ -301,7 +307,7 @@ "source": [ "# Runs the experiment at a new angle of rotation\n", "def perform_angle(angle):\n", - " error_list = LF_experiment(data_x, data_y, angle, model, granularity, reps=reps, ntrees=16, acorn=1)\n", + " error_list = LF_experiment(data_x, data_y, angle, model, granularity, max_depth, reps=reps, ntrees=16, acorn=1)\n", " \n", " # Returns a single array for each angle containing the original error and transfer learning error\n", " return(error_list)" @@ -316,12 +322,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "rep:0\n", - "rep:0rep:0rep:0\n", - "\n", - "\n", "rep:0rep:0rep:0rep:0\n", "\n", + "rep:0\n", "\n", "\n", "rep:1\n", @@ -329,12 +332,6 @@ "rep:1\n", "rep:1\n", "rep:1\n", - "rep:1\n", - "rep:1\n", - "rep:1\n", - "rep:2\n", - "rep:2\n", - "rep:2\n", "rep:2\n", "rep:2\n", "rep:2\n", @@ -345,28 +342,16 @@ "rep:3\n", "rep:3\n", "rep:3\n", - "rep:3\n", - "rep:3\n", - "rep:3\n", - "rep:4\n", "rep:4\n", "rep:4\n", "rep:4\n", "rep:4\n", "rep:4\n", - "rep:4\n", - "rep:4\n", - "rep:5\n", - "rep:5\n", "rep:5\n", "rep:5\n", "rep:5\n", "rep:5\n", "rep:5\n", - "rep:5\n", - "rep:6\n", - "rep:6\n", - "rep:6\n", "rep:6\n", "rep:6\n", "rep:6\n", @@ -377,28 +362,16 @@ "rep:7\n", "rep:7\n", "rep:7\n", - "rep:7\n", - "rep:7\n", - "rep:7\n", - "rep:8\n", "rep:8\n", "rep:8\n", "rep:8\n", "rep:8\n", "rep:8\n", - "rep:8\n", - "rep:8\n", - "rep:9\n", - "rep:9\n", "rep:9\n", "rep:9\n", "rep:9\n", "rep:9\n", "rep:9\n", - "rep:9\n", - "rep:10\n", - "rep:10\n", - "rep:10\n", "rep:10\n", "rep:10\n", "rep:10\n", @@ -409,28 +382,16 @@ "rep:11\n", "rep:11\n", "rep:11\n", - "rep:11\n", - "rep:11\n", - "rep:11\n", - "rep:12\n", "rep:12\n", "rep:12\n", "rep:12\n", "rep:12\n", "rep:12\n", - "rep:12\n", - "rep:12\n", - "rep:13\n", - "rep:13\n", "rep:13\n", "rep:13\n", "rep:13\n", "rep:13\n", "rep:13\n", - "rep:13\n", - "rep:14\n", - "rep:14\n", - "rep:14\n", "rep:14\n", "rep:14\n", "rep:14\n", @@ -441,28 +402,16 @@ "rep:15\n", "rep:15\n", "rep:15\n", - "rep:15\n", - "rep:15\n", - "rep:15\n", - "rep:16\n", "rep:16\n", "rep:16\n", "rep:16\n", "rep:16\n", "rep:16\n", - "rep:16\n", - "rep:16\n", - "rep:17\n", - "rep:17\n", "rep:17\n", "rep:17\n", "rep:17\n", "rep:17\n", "rep:17\n", - "rep:17\n", - "rep:18\n", - "rep:18\n", - "rep:18\n", "rep:18\n", "rep:18\n", "rep:18\n", @@ -473,28 +422,16 @@ "rep:19\n", "rep:19\n", "rep:19\n", - "rep:19\n", - "rep:19\n", - "rep:19\n", - "rep:20\n", "rep:20\n", "rep:20\n", "rep:20\n", "rep:20\n", "rep:20\n", - "rep:20\n", - "rep:20\n", - "rep:21\n", - "rep:21\n", "rep:21\n", "rep:21\n", "rep:21\n", "rep:21\n", "rep:21\n", - "rep:21\n", - "rep:22\n", - "rep:22\n", - "rep:22\n", "rep:22\n", "rep:22\n", "rep:22\n", @@ -505,28 +442,16 @@ "rep:23\n", "rep:23\n", "rep:23\n", - "rep:23\n", - "rep:23\n", - "rep:23\n", - "rep:24\n", "rep:24\n", "rep:24\n", "rep:24\n", "rep:24\n", "rep:24\n", - "rep:24\n", - "rep:24\n", - "rep:25\n", - "rep:25\n", "rep:25\n", "rep:25\n", "rep:25\n", "rep:25\n", "rep:25\n", - "rep:25\n", - "rep:26\n", - "rep:26\n", - "rep:26\n", "rep:26\n", "rep:26\n", "rep:26\n", @@ -537,28 +462,16 @@ "rep:27\n", "rep:27\n", "rep:27\n", - "rep:27\n", - "rep:27\n", - "rep:27\n", - "rep:28\n", "rep:28\n", "rep:28\n", "rep:28\n", "rep:28\n", "rep:28\n", - "rep:28\n", - "rep:28\n", - "rep:29\n", - "rep:29\n", "rep:29\n", "rep:29\n", "rep:29\n", "rep:29\n", "rep:29\n", - "rep:29\n", - "rep:30\n", - "rep:30\n", - "rep:30\n", "rep:30\n", "rep:30\n", "rep:30\n", @@ -569,28 +482,16 @@ "rep:31\n", "rep:31\n", "rep:31\n", - "rep:31\n", - "rep:31\n", - "rep:31\n", - "rep:32\n", "rep:32\n", "rep:32\n", "rep:32\n", "rep:32\n", "rep:32\n", - "rep:32\n", - "rep:32\n", - "rep:33\n", - "rep:33\n", "rep:33\n", "rep:33\n", "rep:33\n", "rep:33\n", "rep:33\n", - "rep:33\n", - "rep:34\n", - "rep:34\n", - "rep:34\n", "rep:34\n", "rep:34\n", "rep:34\n", @@ -601,28 +502,16 @@ "rep:35\n", "rep:35\n", "rep:35\n", - "rep:35\n", - "rep:35\n", - "rep:35\n", - "rep:36\n", "rep:36\n", "rep:36\n", "rep:36\n", "rep:36\n", "rep:36\n", - "rep:36\n", - "rep:36\n", - "rep:37\n", - "rep:37\n", "rep:37\n", "rep:37\n", "rep:37\n", "rep:37\n", "rep:37\n", - "rep:37\n", - "rep:38\n", - "rep:38\n", - "rep:38\n", "rep:38\n", "rep:38\n", "rep:38\n", @@ -633,28 +522,16 @@ "rep:39\n", "rep:39\n", "rep:39\n", - "rep:39\n", - "rep:39\n", - "rep:39\n", - "rep:40\n", "rep:40\n", "rep:40\n", "rep:40\n", "rep:40\n", "rep:40\n", - "rep:40\n", - "rep:40\n", - "rep:41\n", - "rep:41\n", "rep:41\n", "rep:41\n", "rep:41\n", "rep:41\n", "rep:41\n", - "rep:41\n", - "rep:42\n", - "rep:42\n", - "rep:42\n", "rep:42\n", "rep:42\n", "rep:42\n", @@ -665,28 +542,16 @@ "rep:43\n", "rep:43\n", "rep:43\n", - "rep:43\n", - "rep:43\n", - "rep:43\n", - "rep:44\n", "rep:44\n", "rep:44\n", "rep:44\n", "rep:44\n", "rep:44\n", - "rep:44\n", - "rep:44\n", - "rep:45\n", - "rep:45\n", "rep:45\n", "rep:45\n", "rep:45\n", "rep:45\n", "rep:45\n", - "rep:45\n", - "rep:46\n", - "rep:46\n", - "rep:46\n", "rep:46\n", "rep:46\n", "rep:46\n", @@ -697,28 +562,16 @@ "rep:47\n", "rep:47\n", "rep:47\n", - "rep:47\n", - "rep:47\n", - "rep:47\n", - "rep:48\n", "rep:48\n", "rep:48\n", "rep:48\n", "rep:48\n", "rep:48\n", - "rep:48\n", - "rep:48\n", - "rep:49\n", - "rep:49\n", "rep:49\n", "rep:49\n", "rep:49\n", "rep:49\n", "rep:49\n", - "rep:49\n", - "rep:50\n", - "rep:50\n", - "rep:50\n", "rep:50\n", "rep:50\n", "rep:50\n", @@ -729,28 +582,16 @@ "rep:51\n", "rep:51\n", "rep:51\n", - "rep:51\n", - "rep:51\n", - "rep:51\n", - "rep:52\n", "rep:52\n", "rep:52\n", "rep:52\n", "rep:52\n", "rep:52\n", - "rep:52\n", - "rep:52\n", - "rep:53\n", - "rep:53\n", "rep:53\n", "rep:53\n", "rep:53\n", "rep:53\n", "rep:53\n", - "rep:53\n", - "rep:54\n", - "rep:54\n", - "rep:54\n", "rep:54\n", "rep:54\n", "rep:54\n", @@ -761,28 +602,16 @@ "rep:55\n", "rep:55\n", "rep:55\n", - "rep:55\n", - "rep:55\n", - "rep:55\n", - "rep:56\n", "rep:56\n", "rep:56\n", "rep:56\n", "rep:56\n", "rep:56\n", - "rep:56\n", - "rep:56\n", - "rep:57\n", - "rep:57\n", "rep:57\n", "rep:57\n", "rep:57\n", "rep:57\n", "rep:57\n", - "rep:57\n", - "rep:58\n", - "rep:58\n", - "rep:58\n", "rep:58\n", "rep:58\n", "rep:58\n", @@ -793,28 +622,16 @@ "rep:59\n", "rep:59\n", "rep:59\n", - "rep:59\n", - "rep:59\n", - "rep:59\n", - "rep:60\n", "rep:60\n", "rep:60\n", "rep:60\n", "rep:60\n", "rep:60\n", - "rep:60\n", - "rep:60\n", - "rep:61\n", - "rep:61\n", "rep:61\n", "rep:61\n", "rep:61\n", "rep:61\n", "rep:61\n", - "rep:61\n", - "rep:62\n", - "rep:62\n", - "rep:62\n", "rep:62\n", "rep:62\n", "rep:62\n", @@ -825,28 +642,16 @@ "rep:63\n", "rep:63\n", "rep:63\n", - "rep:63\n", - "rep:63\n", - "rep:63\n", - "rep:64\n", "rep:64\n", "rep:64\n", "rep:64\n", "rep:64\n", "rep:64\n", - "rep:64\n", - "rep:64\n", - "rep:65\n", - "rep:65\n", "rep:65\n", "rep:65\n", "rep:65\n", "rep:65\n", "rep:65\n", - "rep:65\n", - "rep:66\n", - "rep:66\n", - "rep:66\n", "rep:66\n", "rep:66\n", "rep:66\n", @@ -857,28 +662,16 @@ "rep:67\n", "rep:67\n", "rep:67\n", - "rep:67\n", - "rep:67\n", - "rep:67\n", - "rep:68\n", "rep:68\n", "rep:68\n", "rep:68\n", "rep:68\n", "rep:68\n", - "rep:68\n", - "rep:68\n", - "rep:69\n", - "rep:69\n", "rep:69\n", "rep:69\n", "rep:69\n", "rep:69\n", "rep:69\n", - "rep:69\n", - "rep:70\n", - "rep:70\n", - "rep:70\n", "rep:70\n", "rep:70\n", "rep:70\n", @@ -889,1049 +682,26 @@ "rep:71\n", "rep:71\n", "rep:71\n", - "rep:71\n", - "rep:71\n", - "rep:71\n", - "rep:72\n", "rep:72\n", "rep:72\n", "rep:72\n", "rep:72\n", "rep:72\n", - "rep:72\n", - "rep:72\n", - "rep:73\n", - "rep:73\n", "rep:73\n", "rep:73\n", "rep:73\n", "rep:73\n", "rep:73\n", - "rep:73\n", - "rep:74\n", - "rep:74\n", - "rep:74\n", - "rep:74\n", - "rep:74\n", - "rep:74\n", - "rep:74\n", - "rep:74\n", - "rep:75\n", - "rep:75\n", - "rep:75\n", - "rep:75\n", - "rep:75\n", - "rep:75\n", - "rep:75\n", - "rep:75\n", - "rep:76\n", - "rep:76\n", - "rep:76\n", - "rep:76\n", - "rep:76\n", - "rep:76\n", - "rep:76\n", - "rep:76\n", - "rep:77\n", - "rep:77\n", - "rep:77\n", - "rep:77\n", - "rep:77\n", - "rep:77\n", - "rep:77\n", - "rep:77\n", - "rep:78\n", - "rep:78\n", - "rep:78\n", - "rep:78\n", - "rep:78\n", - "rep:78\n", - "rep:78\n", - "rep:78\n", - "rep:79\n", - "rep:79\n", - "rep:79\n", - "rep:79\n", - "rep:79\n", - "rep:79\n", - "rep:79\n", - "rep:79\n", - "rep:80\n", - "rep:80\n", - "rep:80\n", - "rep:80\n", - "rep:80\n", - "rep:80\n", - "rep:80\n", - "rep:80\n", - "rep:81\n", - "rep:81\n", - "rep:81\n", - "rep:81\n", - "rep:81\n", - "rep:81\n", - "rep:81\n", - "rep:81\n", - "rep:82\n", - "rep:82\n", - "rep:82\n", - "rep:82\n", - "rep:82\n", - "rep:82\n", - "rep:82\n", - "rep:82\n", - "rep:83\n", - "rep:83\n", - "rep:83\n", - "rep:83\n", - "rep:83\n", - "rep:83\n", - "rep:83\n", - "rep:83\n", - "rep:84\n", - "rep:84\n", - "rep:84\n", - "rep:84\n", - "rep:84\n", - "rep:84\n", - "rep:84\n", - "rep:84\n", - "rep:85\n", - "rep:85\n", - "rep:85\n", - "rep:85\n", - "rep:85\n", - "rep:85\n", - "rep:85\n", - "rep:85\n", - "rep:86\n", - "rep:86\n", - "rep:86\n", - "rep:86\n", - "rep:86\n", - "rep:86\n", - "rep:86\n", - "rep:86\n", - "rep:87\n", - "rep:87\n", - "rep:87\n", - "rep:87\n", - "rep:87\n", - "rep:87\n", - "rep:87\n", - "rep:87\n", - "rep:88\n", - "rep:88\n", - "rep:88\n", - "rep:88\n", - "rep:88\n", - "rep:88\n", - "rep:88\n", - "rep:88\n", - "rep:89\n", - "rep:89\n", - "rep:89\n", - "rep:89\n", - "rep:89\n", - "rep:89\n", - "rep:89\n", - "rep:89\n", - "rep:90\n", - "rep:90\n", - "rep:90\n", - "rep:90\n", - "rep:90\n", - "rep:90\n", - "rep:90\n", - "rep:90\n", - "rep:91\n", - "rep:91\n", - "rep:91\n", - "rep:91\n", - "rep:91\n", - "rep:91\n", - "rep:91\n", - "rep:91\n", - "rep:92\n", - "rep:92\n", - "rep:92\n", - "rep:92\n", - "rep:92\n", - "rep:92\n", - "rep:92\n", - "rep:92\n", - "rep:93\n", - "rep:93\n", - "rep:93\n", - "rep:93\n", - "rep:93\n", - "rep:93\n", - "rep:93\n", - "rep:93\n", - "rep:94\n", - "rep:94\n", - "rep:94\n", - "rep:94\n", - "rep:94\n", - "rep:94\n", - "rep:94\n", - "rep:94\n", - "rep:95\n", - "rep:95\n", - "rep:95\n", - "rep:95\n", - "rep:95\n", - "rep:95\n", - "rep:95\n", - "rep:95\n", - "rep:96\n", - "rep:96\n", - "rep:96\n", - "rep:96\n", - "rep:96\n", - "rep:96\n", - "rep:96\n", - "rep:96\n", - "rep:97\n", - "rep:97\n", - "rep:97\n", - "rep:97\n", - "rep:97\n", - "rep:97\n", - "rep:97\n", - "rep:97\n", - "rep:98\n", - "rep:98\n", - "rep:98\n", - "rep:98\n", - "rep:98\n", - "rep:98\n", - "rep:98\n", - "rep:98\n", - "rep:99\n", - "rep:99\n", - "rep:99\n", - "rep:99\n", - "rep:99\n", - "rep:99\n", - "rep:99\n", - "rep:99\n", - "Errors For Angle 24: [0.58773 0.558 ]\n", - "rep:0\n", - "Errors For Angle 72: [0.58575 0.56101]\n", - "rep:0\n", - "Errors For Angle 36: [0.5844 0.558 ]\n", - "rep:0\n", - "Errors For Angle 12: [0.5843 0.55316]\n", - "rep:0\n", - "Errors For Angle 48: [0.58805 0.56009]\n", - "rep:0\n", - "Errors For Angle 84: [0.58642 0.56265]\n", - "rep:0\n", - "Errors For Angle 0: [0.58901 0.55949]\n", - "rep:0\n", - "Errors For Angle 60: [0.58595 0.5583 ]\n", - "rep:0\n", - "rep:1\n", - "rep:1\n", - "rep:1\n", - "rep:1\n", - "rep:1\n", - "rep:1\n", - "rep:1\n", - "rep:1\n", - "rep:2\n", - "rep:2\n", - "rep:2\n", - "rep:2\n", - "rep:2\n", - "rep:2\n", - "rep:2\n", - "rep:2\n", - "rep:3\n", - "rep:3\n", - "rep:3\n", - "rep:3\n", - "rep:3\n", - "rep:3\n", - "rep:3\n", - "rep:3\n", - "rep:4\n", - "rep:4\n", - "rep:4\n", - "rep:4\n", - "rep:4\n", - "rep:4\n", - "rep:4\n", - "rep:4\n", - "rep:5\n", - "rep:5\n", - "rep:5\n", - "rep:5\n", - "rep:5\n", - "rep:5\n", - "rep:5\n", - "rep:5\n", - "rep:6\n", - "rep:6\n", - "rep:6\n", - "rep:6\n", - "rep:6\n", - "rep:6\n", - "rep:6\n", - "rep:6\n", - "rep:7\n", - "rep:7\n", - "rep:7\n", - "rep:7\n", - "rep:7\n", - "rep:7\n", - "rep:7\n", - "rep:7\n", - "rep:8\n", - "rep:8\n", - "rep:8\n", - "rep:8\n", - "rep:8\n", - "rep:8\n", - "rep:8\n", - "rep:8\n", - "rep:9\n", - "rep:9\n", - "rep:9\n", - "rep:9\n", - "rep:9\n", - "rep:9\n", - "rep:9\n", - "rep:9\n", - "rep:10\n", - "rep:10\n", - "rep:10\n", - "rep:10\n", - "rep:10\n", - "rep:10\n", - "rep:10\n", - "rep:10\n", - "rep:11\n", - "rep:11\n", - "rep:11\n", - "rep:11\n", - "rep:11\n", - "rep:11\n", - "rep:11\n", - "rep:11\n", - "rep:12\n", - "rep:12\n", - "rep:12\n", - "rep:12\n", - "rep:12\n", - "rep:12\n", - "rep:12\n", - "rep:12\n", - "rep:13\n", - "rep:13\n", - "rep:13\n", - "rep:13\n", - "rep:13\n", - "rep:13\n", - "rep:13\n", - "rep:13\n", - "rep:14\n", - "rep:14\n", - "rep:14\n", - "rep:14\n", - "rep:14\n", - "rep:14\n", - "rep:14\n", - "rep:14\n", - "rep:15\n", - "rep:15\n", - "rep:15\n", - "rep:15\n", - "rep:15\n", - "rep:15\n", - "rep:15\n", - "rep:15\n", - "rep:16\n", - "rep:16\n", - "rep:16\n", - "rep:16\n", - "rep:16\n", - "rep:16\n", - "rep:16\n", - "rep:16\n", - "rep:17\n", - "rep:17\n", - "rep:17\n", - "rep:17\n", - "rep:17\n", - "rep:17\n", - "rep:17\n", - "rep:17\n", - "rep:18\n", - "rep:18\n", - "rep:18\n", - "rep:18\n", - "rep:18\n", - "rep:18\n", - "rep:18\n", - "rep:18\n", - "rep:19\n", - "rep:19\n", - "rep:19\n", - "rep:19\n", - "rep:19\n", - "rep:19\n", - "rep:19\n", - "rep:19\n", - "rep:20\n", - "rep:20\n", - "rep:20\n", - "rep:20\n", - "rep:20\n", - "rep:20\n", - "rep:20\n", - "rep:20\n", - "rep:21\n", - "rep:21\n", - "rep:21\n", - "rep:21\n", - "rep:21\n", - "rep:21\n", - "rep:21\n", - "rep:21\n", - "rep:22\n", - "rep:22\n", - "rep:22\n", - "rep:22\n", - "rep:22\n", - "rep:22\n", - "rep:22\n", - "rep:22\n", - "rep:23\n", - "rep:23\n", - "rep:23\n", - "rep:23\n", - "rep:23\n", - "rep:23\n", - "rep:23\n", - "rep:23\n", - "rep:24\n", - "rep:24\n", - "rep:24\n", - "rep:24\n", - "rep:24\n", - "rep:24\n", - "rep:24\n", - "rep:24\n", - "rep:25\n", - "rep:25\n", - "rep:25\n", - "rep:25\n", - "rep:25\n", - "rep:25\n", - "rep:25\n", - "rep:25\n", - "rep:26\n", - "rep:26\n", - "rep:26\n", - "rep:26\n", - "rep:26\n", - "rep:26\n", - "rep:26\n", - "rep:26\n", - "rep:27\n", - "rep:27\n", - "rep:27\n", - "rep:27\n", - "rep:27\n", - "rep:27\n", - "rep:27\n", - "rep:27\n", - "rep:28\n", - "rep:28\n", - "rep:28\n", - "rep:28\n", - "rep:28\n", - "rep:28\n", - "rep:28\n", - "rep:28\n", - "rep:29\n", - "rep:29\n", - "rep:29\n", - "rep:29\n", - "rep:29\n", - "rep:29\n", - "rep:29\n", - "rep:29\n", - "rep:30\n", - "rep:30\n", - "rep:30\n", - "rep:30\n", - "rep:30\n", - "rep:30\n", - "rep:30\n", - "rep:30\n", - "rep:31\n", - "rep:31\n", - "rep:31\n", - "rep:31\n", - "rep:31\n", - "rep:31\n", - "rep:31\n", - "rep:31\n", - "rep:32\n", - "rep:32\n", - "rep:32\n", - "rep:32\n", - "rep:32\n", - "rep:32\n", - "rep:32\n", - "rep:32\n", - "rep:33\n", - "rep:33\n", - "rep:33\n", - "rep:33\n", - "rep:33\n", - "rep:33\n", - "rep:33\n", - "rep:33\n", - "rep:34\n", - "rep:34\n", - "rep:34\n", - "rep:34\n", - "rep:34\n", - "rep:34\n", - "rep:34\n", - "rep:34\n", - "rep:35\n", - "rep:35\n", - "rep:35\n", - "rep:35\n", - "rep:35\n", - "rep:35\n", - "rep:35\n", - "rep:35\n", - "rep:36\n", - "rep:36\n", - "rep:36\n", - "rep:36\n", - "rep:36\n", - "rep:36\n", - "rep:36\n", - "rep:36\n", - "rep:37\n", - "rep:37\n", - "rep:37\n", - "rep:37\n", - "rep:37\n", - "rep:37\n", - "rep:37\n", - "rep:37\n", - "rep:38\n", - "rep:38\n", - "rep:38\n", - "rep:38\n", - "rep:38\n", - "rep:38\n", - "rep:38\n", - "rep:38\n", - "rep:39\n", - "rep:39\n", - "rep:39\n", - "rep:39\n", - "rep:39\n", - "rep:39\n", - "rep:39\n", - "rep:39\n", - "rep:40\n", - "rep:40\n", - "rep:40\n", - "rep:40\n", - "rep:40\n", - "rep:40\n", - "rep:40\n", - "rep:40\n", - "rep:41\n", - "rep:41\n", - "rep:41\n", - "rep:41\n", - "rep:41\n", - "rep:41\n", - "rep:41\n", - "rep:41\n", - "rep:42\n", - "rep:42\n", - "rep:42\n", - "rep:42\n", - "rep:42\n", - "rep:42\n", - "rep:42\n", - "rep:42\n", - "rep:43\n", - "rep:43\n", - "rep:43\n", - "rep:43\n", - "rep:43\n", - "rep:43\n", - "rep:43\n", - "rep:43\n", - "rep:44\n", - "rep:44\n", - "rep:44\n", - "rep:44\n", - "rep:44\n", - "rep:44\n", - "rep:44\n", - "rep:44\n", - "rep:45\n", - "rep:45\n", - "rep:45\n", - "rep:45\n", - "rep:45\n", - "rep:45\n", - "rep:45\n", - "rep:45\n", - "rep:46\n", - "rep:46\n", - "rep:46\n", - "rep:46\n", - "rep:46\n", - "rep:46\n", - "rep:46\n", - "rep:46\n", - "rep:47\n", - "rep:47\n", - "rep:47\n", - "rep:47\n", - "rep:47\n", - "rep:47\n", - "rep:47\n", - "rep:47\n", - "rep:48\n", - "rep:48\n", - "rep:48\n", - "rep:48\n", - "rep:48\n", - "rep:48\n", - "rep:48\n", - "rep:48\n", - "rep:49\n", - "rep:49\n", - "rep:49\n", - "rep:49\n", - "rep:49\n", - "rep:49\n", - "rep:49\n", - "rep:49\n", - "rep:50\n", - "rep:50\n", - "rep:50\n", - "rep:50\n", - "rep:50\n", - "rep:50\n", - "rep:50\n", - "rep:50\n", - "rep:51\n", - "rep:51\n", - "rep:51\n", - "rep:51\n", - "rep:51\n", - "rep:51\n", - "rep:51\n", - "rep:51\n", - "rep:52\n", - "rep:52\n", - "rep:52\n", - "rep:52\n", - "rep:52\n", - "rep:52\n", - "rep:52\n", - "rep:52\n", - "rep:53\n", - "rep:53\n", - "rep:53\n", - "rep:53\n", - "rep:53\n", - "rep:53\n", - "rep:53\n", - "rep:53\n", - "rep:54\n", - "rep:54\n", - "rep:54\n", - "rep:54\n", - "rep:54\n", - "rep:54\n", - "rep:54\n", - "rep:54\n", - "rep:55\n", - "rep:55\n", - "rep:55\n", - "rep:55\n", - "rep:55\n", - "rep:55\n", - "rep:55\n", - "rep:55\n", - "rep:56\n", - "rep:56\n", - "rep:56\n", - "rep:56\n", - "rep:56\n", - "rep:56\n", - "rep:56\n", - "rep:56\n", - "rep:57\n", - "rep:57\n", - "rep:57\n", - "rep:57\n", - "rep:57\n", - "rep:57\n", - "rep:57\n", - "rep:57\n", - "rep:58\n", - "rep:58\n", - "rep:58\n", - "rep:58\n", - "rep:58\n", - "rep:58\n", - "rep:58\n", - "rep:58\n", - "rep:59\n", - "rep:59\n", - "rep:59\n", - "rep:59\n", - "rep:59\n", - "rep:59\n", - "rep:59\n", - "rep:59\n", - "rep:60\n", - "rep:60\n", - "rep:60\n", - "rep:60\n", - "rep:60\n", - "rep:60\n", - "rep:60\n", - "rep:60\n", - "rep:61\n", - "rep:61\n", - "rep:61\n", - "rep:61\n", - "rep:61\n", - "rep:61\n", - "rep:61\n", - "rep:61\n", - "rep:62\n", - "rep:62\n", - "rep:62\n", - "rep:62\n", - "rep:62\n", - "rep:62\n", - "rep:62\n", - "rep:62\n", - "rep:63\n", - "rep:63\n", - "rep:63\n", - "rep:63\n", - "rep:63\n", - "rep:63\n", - "rep:63\n", - "rep:63\n", - "rep:64\n", - "rep:64\n", - "rep:64\n", - "rep:64\n", - "rep:64\n", - "rep:64\n", - "rep:64\n", - "rep:64\n", - "rep:65\n", - "rep:65\n", - "rep:65\n", - "rep:65\n", - "rep:65\n", - "rep:65\n", - "rep:65\n", - "rep:65\n", - "rep:66\n", - "rep:66\n", - "rep:66\n", - "rep:66\n", - "rep:66\n", - "rep:66\n", - "rep:66\n", - "rep:66\n", - "rep:67\n", - "rep:67\n", - "rep:67\n", - "rep:67\n", - "rep:67\n", - "rep:67\n", - "rep:67\n", - "rep:67\n", - "rep:68\n", - "rep:68\n", - "rep:68\n", - "rep:68\n", - "rep:68\n", - "rep:68\n", - "rep:68\n", - "rep:68\n", - "rep:69\n", - "rep:69\n", - "rep:69\n", - "rep:69\n", - "rep:69\n", - "rep:69\n", - "rep:69\n", - "rep:69\n", - "rep:70\n", - "rep:70\n", - "rep:70\n", - "rep:70\n", - "rep:70\n", - "rep:70\n", - "rep:70\n", - "rep:70\n", - "rep:71\n", - "rep:71\n", - "rep:71\n", - "rep:71\n", - "rep:71\n", - "rep:71\n", - "rep:71\n", - "rep:71\n", - "rep:72\n", - "rep:72\n", - "rep:72\n", - "rep:72\n", - "rep:72\n", - "rep:72\n", - "rep:72\n", - "rep:72\n", - "rep:73\n", - "rep:73\n", - "rep:73\n", - "rep:73\n", - "rep:73\n", - "rep:73\n", - "rep:73\n", - "rep:73\n", - "rep:74\n", - "rep:74\n", - "rep:74\n", "rep:74\n", "rep:74\n", "rep:74\n", "rep:74\n", "rep:74\n", - "rep:75\n", - "rep:75\n", - "rep:75\n", - "rep:75\n", - "rep:75\n", - "rep:75\n", - "rep:75\n", - "rep:75\n", - "rep:76\n", - "rep:76\n", - "rep:76\n", - "rep:76\n", - "rep:76\n", - "rep:76\n", - "rep:76\n", - "rep:76\n", - "rep:77\n", - "rep:77\n", - "rep:77\n", - "rep:77\n", - "rep:77\n", - "rep:77\n", - "rep:77\n", - "rep:77\n", - "rep:78\n", - "rep:78\n", - "rep:78\n", - "rep:78\n", - "rep:78\n", - "rep:78\n", - "rep:78\n", - "rep:78\n", - "rep:79\n", - "rep:79\n", - "rep:79\n", - "rep:79\n", - "rep:79\n", - "rep:79\n", - "rep:79\n", - "rep:79\n", - "rep:80\n", - "rep:80\n", - "rep:80\n", - "rep:80\n", - "rep:80\n", - "rep:80\n", - "rep:80\n", - "rep:80\n", - "rep:81\n", - "rep:81\n", - "rep:81\n", - "rep:81\n", - "rep:81\n", - "rep:81\n", - "rep:81\n", - "rep:81\n", - "rep:82\n", - "rep:82\n", - "rep:82\n", - "rep:82\n", - "rep:82\n", - "rep:82\n", - "rep:82\n", - "rep:82\n", - "rep:83\n", - "rep:83\n", - "rep:83\n", - "rep:83\n", - "rep:83\n", - "rep:83\n", - "rep:83\n", - "rep:83\n", - "rep:84\n", - "rep:84\n", - "rep:84\n", - "rep:84\n", - "rep:84\n", - "rep:84\n", - "rep:84\n", - "rep:84\n", - "rep:85\n", - "rep:85\n", - "rep:85\n", - "rep:85\n", - "rep:85\n", - "rep:85\n", - "rep:85\n", - "rep:85\n", - "rep:86\n", - "rep:86\n", - "rep:86\n", - "rep:86\n", - "rep:86\n", - "rep:86\n", - "rep:86\n", - "rep:86\n", - "rep:87\n", - "rep:87\n", - "rep:87\n", - "rep:87\n", - "rep:87\n", - "rep:87\n", - "rep:87\n", - "rep:87\n", - "rep:88\n", - "rep:88\n", - "rep:88\n", - "rep:88\n", - "rep:88\n", - "rep:88\n", - "rep:88\n", - "rep:88\n", - "rep:89\n", - "rep:89\n", - "rep:89\n", - "rep:89\n", - "rep:89\n", - "rep:89\n", - "rep:89\n", - "rep:89\n", - "rep:90\n", - "rep:90\n", - "rep:90\n", - "rep:90\n", - "rep:90\n", - "rep:90\n", - "rep:90\n", - "rep:90\n", - "rep:91\n", - "rep:91\n", - "rep:91\n", - "rep:91\n", - "rep:91\n", - "rep:91\n", - "rep:91\n", - "rep:91\n", - "rep:92\n", - "rep:92\n", - "rep:92\n", - "rep:92\n", - "rep:92\n", - "rep:92\n", - "rep:92\n", - "rep:92\n", - "rep:93\n", - "rep:93\n", - "rep:93\n", - "rep:93\n", - "rep:93\n", - "rep:93\n", - "rep:93\n", - "rep:93\n", - "rep:94\n", - "rep:94\n", - "rep:94\n", - "rep:94\n", - "rep:94\n", - "rep:94\n", - "rep:94\n", - "rep:94\n", - "rep:95\n", - "rep:95\n", - "rep:95\n", - "rep:95\n", - "rep:95\n", - "rep:95\n", - "rep:95\n", - "rep:95\n", - "rep:96\n", - "rep:96\n", - "rep:96\n", - "rep:96\n", - "rep:96\n", - "rep:96\n", - "rep:96\n", - "rep:96\n", - "rep:97\n", - "rep:97\n", - "rep:97\n", - "rep:97\n", - "rep:97\n", - "rep:97\n", - "rep:97\n", - "rep:97\n", - "rep:98\n", - "rep:98\n", - "rep:98\n", - "rep:98\n", - "rep:98\n", - "rep:98\n", - "rep:98\n", - "rep:98\n", - "rep:99\n", - "rep:99\n", - "rep:99\n", - "rep:99\n", - "rep:99\n", - "rep:99\n", - "rep:99\n", - "rep:99\n", - "Errors For Angle 132: [0.58941 0.5645 ]\n", - "Errors For Angle 120: [0.58622 0.56221]\n", - "Errors For Angle 108: [0.58786 0.56398]\n", - "Errors For Angle 144: [0.58703 0.56147]\n", - "Errors For Angle 168: [0.58734 0.56196]\n", - "Errors For Angle 96: [0.58468 0.55944]\n", - "Errors For Angle 156: [0.58546 0.5615 ]\n", - "Errors For Angle 180: [0.58578 0.56251]\n" + "Errors For Angle 45: [0.61404 0.59921333]\n", + "Errors For Angle 135: [0.61817333 0.60345333]\n", + "Errors For Angle 90: [0.62190667 0.60536 ]\n", + "Errors For Angle 180: [0.62278667 0.60713333]\n", + "Errors For Angle 0: [0.62405333 0.59793333]\n" ] } ], @@ -1997,7 +767,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAI4CAYAAABndZP2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACiYklEQVR4nOzdd3zb1dXH8c+x4+y9E7J3CAkrzDASZlhlr7bMthS6gEL7tIWyWp6Op4UWOigUmjLKni0rhBHCKoQdIIMssskezrR9nj9+P8myItmWLFnD3/frpZes3zxSHPv43nPvNXdHREREpJiU5DoAERERkUxTgiMiIiJFRwmOiIiIFB0lOCIiIlJ0lOCIiIhI0VGCIyIiIkVHCY6INIiZvWJmbmbn5zoWSY+ZnR/+G76S61hEMkUJjkgDmdmk8JdD/GOjmX1iZn8xs5FZuO94M7vOzE7K9LXD6w8Ir39ZNq6fK+F7SvTvlejxh1zHK5lnZieF3wfjcx2LZE+zXAcgUkR2AGvCrw3oCuwaPr5hZl9394czeL/xwLXAP4EnMnjdiAHh9RcCf6jluC+AWcD6LMSQTVXAyjqO2dAYgeSB9QT/hl/kOpBGchJwXvj1K7kLQ7JJCY5I5rzh7uMjL8ysDDgc+CtBsvAPM3vF3ev6pVpQ3P3cXMeQpkXuPiDXQeQDd38ceDzXcYhkkrqoRLLE3Xe4+3PA18JNbYBTcxiSiEiToQRHJPveBDaFX++a6AAz62FmvzezmWa22czWm9nbZnaFmbWIO3aAmTlB9xHAeQlqRwbEHD/MzK4xs5fMbL6ZbTWzdWb2Vnj9VgniWQC8HL7sn+D658ccW2uRsZm1D+sdPjSzTeHjIzO73sw6JDknUiczKXx9npn9N6xr2mBmL5vZkYnOzRYzO9rMqsLHUUmO+WkY9/q4f4MaRbzh+3krfC/rzexFM5tYjxhOMLMnzWy5mW03sy/N7N9mdnSS4+Pv+zUzm2pmq8PtJyU6Lu4aC8J9482sl5ndZmaLzGyLmX1mZpebWUnM8aeb2bTwe2yDmT1tZrvV8b66mdmvzOzj8Puj3MxmmNmNZtY5yTmxcXU2s5vC7+9tZrbEzO4ws15x54wP/+9Euqeujf/eri1OKTDuroceejTgAUwCHHglyX4jSHAc+HOC/fsCq8P9TlD3sSXm9QdA95jj+wLLY665JXwd++gbc/z0mGttCe9VFbPtHaBdXEzvENQTOVCZ4Ppnxhz7Snjc+Qne2xBgQcy9ysNH5PVCYGiC864L908C/h5+XUFQKxI5txI4NY1/r8i1F6Rx7q3huUuAznH79gS2J/osgPMj3yPAzTHxr437t7gyyX3LgHtjjvO4z8KB3yQ4L/a+t8Tcd034fFL8cQmuEfn3uwBYFnPviph73xoe++uYf6sNMfvXJvp3Ds85iJrf/9uo+f3/BTC8lri+HvN1ObA15tz5QKeYcw4k+P6NXH8Tcd/buf55okfmHjkPQA89Cv1B3QnOuJgfuFfE7esELA33fQTsE24vBU6jOsl4IcF1rwv3Taojvj8D3wD6x2xrAZxAUFiaLPEaTz0SAZIkOEBz4MOYX1JHEiR7RlCbtDDcNwNokeS9rQ1/GV0MtA73DQSmhvuXAs1S/PeKXLvW95Xk3FbAZ+H5D8Vsbwl8Em5/NMF551MzKfk10CHc14vq5KUKOCjB+ZGkaA5wOtAm3N4OuITqZOLsJPfdGF77GqBjuK89YeJM/RKcdcAbwJhwe2vg6pi4f0aQ4F0aE99uwMz4zyvm2v3Df2MH/kKQEJeEj92A58N9nwClSeJaC7wPHBBubwZ8Jea6v63l/+x1jf3zQo/Ge+Q8AD30KPQHSRIcgr+6jyb4K9LDH/594o75ecwP6Z4Jrn0U1cnRYXH7rqMeCU4dsQ8kGP1VTphAxOwbT8MSnHNi3vduCc4bRXWLx4VJ3psDX0twbm+Cv/QdOCTF9xy5dqKWqfjHqATn7xUT9znhtj+Er5cBXRKcc37M+7kjwX4DXgr3T4nbN5QggfiSmJa5uGPOCs+dUct9/7eWzyRy3CsJ9i0I960hTI7i9r8Yc49rEuw/ONy3FWgety+S2P0qSVyxSfJpSeJanuQzvyLcP6+W/7PXpft/R4/8f6gGRyRzDgxrI5ab2QqCH+jPEYygqgK+7e6L4845LXz+u7svj7+gu08mqOEBOCPTAbv7fIK/jlsDe2T48pH39qS7z0hw70+AR8KXyd7bF8C/Epy7FHg7fFlrfUctSoAedTzKEtz7Parrn/5kZhcCPwhfX+juq+u47/8muKYDvwpfHhZXd3IuQQL0oLsvSnLNRwgSvlHxdSehSuCmOuKqy23uvi7B9inh8/Yk93id4P9CC4IWGgDMrDVBa1RVstjcfTvV3yPJaq5uT/KZPxE+DzSzNknOlSKmYeIimVNG8Esx3hrgaHefHrvRzJpT/cv55Vqu+xJwAEHLQVrCgtwLCep9ehF0tcTrne71k4jEW9d7O5vk7216+Ms/kSXhc6c0YgNY6OkPE/8NcCxB/cid4ba/uvuzdZz3RZhUJvIaQSJSSpBsvhRuPzB8Ps/MTq/l2pFkrC9BS1Ksz919VR2x1eXjJNu/DJ8XuPum+J3uXmVmq4A+1Py32pughcaBj80s2X0j36t9k+x/J8n2JTFfdyRopZQmRAmOSOZM9XAeHAtGPo0gqFE4DbjTzMa7+9qY4ztTPZIx9odxvEirT7d0gjKzW4Dvx2yKTEi4IyaOMoJh7JkUibc+762LmVmCZGZjLeduDZ93amXJtvCX9jcJ6ksg6C65sh6nJv0s3H2Lma0lmCAy9t860iLTLnzUpXWCbZmYeyk+aYqorGN/7DGx/1aR92Uk/sMgXqL3BUm+R9x9a0zS1OjfI5J76qISyQJ33+buHxJ0vTwPjAH+VsspLbMRh5kdQ5DcVBLUngwhKOjt4u493b0n8N/I4dmIgSy9tzxwQczXvYDBWbpP5Of05e5u9Xi8kuAalQm25Vrkfa2v5/san8tgpfAowRHJorBF4gcEv2BON7NDY3avIag/AOhXy2X6hM/p/BUe6dL4u7tf7+5zE7SS1Oev53RE4q3Pe1tdS1dU3jGzg4EfhS9nENSX3Bt2O9YmaTegmbWkugsn9t96Rfhc2+dYiCLvq32y+ZBEGkIJjkiWufts4MHw5Y0x27cT/HIEmFDLJQ4Ln9+L2x5JjmpreYkkEO8n2mlm/Ykp/Ezj+rWJxJvOe8tbZtYeuJvg5+ddBO/hS4JWul/WcXr/2AkA4xxEUH/jBHMfRUSKzOucCLDATCeYL8do/PfW0O9tKQBKcEQax+/C53FWcwXjyAiR8xONfglnzD0gfPlQ3O7IQpAda7lvZAHM0Un2/y/Jf8hHrp/uX9eR93aMme0Zv9PMRlE90ir+veWzWwhGxs0HLvNgbbFvhfuuMLND6jj/p/EbLCgW+Un48kV3XxOz+26CpGekmX27tgubWboF143O3TcCj4YvbzCzpPVFZtbMzNpm8Pb1+b8jBU4JjkgjcPf3qR5Oe3XMrj8RFGe2Ap4zs7EAZlZqZqcCD4THTXH3l6jpk/D5IDMbmuTWL4TP3zazCyNdKGbWz8z+STCCaW2Sc+cQFCJ3CGNJ1YMEkxcCPGFmR4S/yDGzw4FnCIo/PwHuS+P6jc7MTiGY5r+KYA6cjQDu/hTBaKoS4J9hK08iG4CLzOx/I90yZtaTYEX4wwkSmetjT3D3Twkm+gP4S7ikQaRlDjNrZ2ZHmdm9QCZXq28MPyHoqh0GvGFmEy1YpBYLDDWzHxIUc4/N4H0j/3cmJhlWL0VACY5I4/lt+Hy4me0PEI6qOokgyRgDvGNmGwimkH+EoCbjI6oX7Iz1CjCXYBTULAvWJVoQPiK/ACcBbxGMmLwT2ByO1FlIML/KtVQnITW4ezlwf/jykXBtocj1T0t0Ttz52wkWF11IUD/yArDJzMoJkr1+BPPcnOLu2+q6Xhb0jZm3KNnjscjBYSJye/jyt+7+etz1LgPmEbTu3JLknu8TTAr4U2C1ma0hmI35nHD/j939tQTn/ZhgVfoSgqRgkQVrWK0jaKV7nuB7pLT+bz/33H0BQffUUoIpE54FysNh5VuB2cDvCQq4M1mj9TjVidViM1sW+d7O4D0kx5TgiDQSd3+B6lqYn8dsf5tgEc6bCX6glxHUJkwnKGTdz92/JI677yD4q/8eguHHnQimvu9POAVEmGQcQbA0wDyClocKgmTjBHf/RR1hX0wwAd1MgkLayPXr1V3g7p8DuwM3UF1vRPj1Lwim/Z9dn2tlQX0m+oudcO8uoAtBfcy1xAnngDmX4DM+L2zt2Ym7X04wAutdgn+nTQRzBR3j7r9Lck6lu3+HoE7nXoKksQXBCLUvgKeA71Hd5Vcw3P0dgikV/odgKYhNBF1Hmwn+D9wCHOruUzN4z1UEtWGPERR0d6P6e1uKhBXQwAURkYJkwUrr/yBmriQRyS614IiIiEjRUYIjIiIiRUcJjoiIiBQdJTgiIiJSdFRknGcmTpzozz33XK7DEBERKRQJJytVC06eWbVqVa5DEBERKXhKcERERKToKMERERGRoqMER0RERIqOEhwREREpOkpwREREpOgowREREZGiowRHREREio4SHBERESk6SnBERESk6CjBERERkaKjBEdERESKjhIcERERKTpKcERERKToKMERERGRoqMER0RERIqOEhwREREpOkpwREREpOgowREREZGiowRHMmbduq3cfvuHfPjhl7kORUREmrhmuQ5AisfFF7/Agw/Ool275sye/Q169myT65BERKSJUguOZMTmzTt44onPAdi4cTuPPjo7xxGJiEhTpgRHMmLatMVs21YZfa0ER0REckkJjmTE5MkLaryeOnUxq1Ztzk0wIiLS5OVtgmNmp5nZrWY2zcw2mJmb2b1pXquPmd1lZkvNbJuZLTCzP5hZpyTHey2Pt2q5Twszu8LM3gljLjez2Wb2TzPrlk7shWLy5IU1XldVOU89NTdH0YiISFOXz0XGVwO7A5uAxcCIdC5iZoOBN4DuwJPATGBf4FJgopmNc/fVCU5dCExKsH1xkvv0BCYDo4HXgTuASqAfcDTwf8DKdN5Dvlu6dBMzZqzaaftjj83hwgtH5yAiERFp6vI5wbmcIJn4HDgUeDnN6/yFILn5gbvfGtloZjeF97gRuDjBeQvc/br63MDMSoCHgOHAV9z933H7jTxuLWuoF15YEP162LBOzJ69Nty+kA0bttG+fYscRSYiIk1V3v7SdfeX3X2Ou3u61whbb44CFgB/jtt9LVAOnGNmDR3PfBJwMHBzfHID4IHKnc4qErHdUxdcsBt77tkdgO3bK3nmmfm5CktERJqwfG7ByYQJ4fNkd6+K3eHuG83sdYIEaH/gxbhzO5rZhUBPYD3wrrsnq7/5avh8v5n1AI4naDVaHt57ScPfSn6qqvIaLThHHTWAiooq3n8/mOzvscdmc9ZZafUuioiIpK3YE5zh4XOyMctzCBKcYeyc4OwO3Bm7wcw+BM5x94/jjt0nfN4X+APQOmbfDjO7wd1/mVroheHDD79k5cotAHTt2oo99uhOy5al/PznrwPwzDPz2bJlB61aleUyTBERaWLytosqQzqEz+uT7I9s7xi3/SZgHNANaEeQwDxCkPS8ZGa7xB3fPXz+K0Fh8qDwmqcCa4FfmNn5yYI0s4vMbLqZTV+5srDqkGOHhx95ZH9KSoyRI7swfHhnAMrLd/DCCwuTnC0iIpIdxZ7gpMXdr3D3N9x9lbtvcvfp7n468CjQFbgy7pTI5zjF3b/r7vPdfb27PwZ8M9z301rud7u7j3X3sd26FdZo8tj6m6OOGgCAmXHKKUOj2x97bE5jhyUiIk1csSc4kRaaDkn2R7avq+f1bgufD4nbHjn/8QTnPANsB4aZWbI4ClJ5+XZee626vCiS4AA1EpynnprLjh1FW2MtIiJ5qNgTnFnh87Ak+yO/heu7rkCk/yh+1FXkPuviTwhHT20IX7aq530KwtSpi9m+PUhcdtutK717t43u23vvHvTt2w6AtWu38sori3ISo4iINE3FnuBE5s45KpyrJsrM2hHU2WwGks5OHGf/8Hle3PYp4fNu8SeEo6q6EkxYuPNseAUstv7mqKP619inbioREcmlokhwzKzMzEaE895EuftcgtmFBwDfjTvteoKWmHvcvTzmWmPMbKchP2Y2hmBSQID4JSPuIkiUvmtmg2LOKSWYwRjgYXevSPW95bOaCc6AnfbHJjiPPz6HysqqnY4RERHJhrwdJm5mJxFMoAfBXDQAB5jZpPDrVe4eKfbdBfiMYHmFAXGX+g7BUg23mNnh4XH7EcyRMxu4Ku74HwInmNk0YBGwjWCZiIlAKcESDPfHnuDui83sO8A/gA/M7HFgDTAe2CO8z4/r/+7z36JFG/jsszUAtGhRysEH99npmHHjdqF799Z8+eVmVqzYzFtvLWPcuPgBaCIiIpmXzy04ewDnhY+jw22DYradVp+LhK04YwmGb+8HXAEMBv4I7J9gHaongKkE3U3nAT8A9gaeBU5094sSza7s7v8EDiNIpr5C0GLUjqAFZz93L6ruqdih3wcf3IfWrXee56a0tISTThoSff3YY/UtdRIREWmYvG3BCdeBuq6exy4ArJb9i4AL6nmtJwiSnJS5+yvAK+mcW2hqq7+JdcopQ7n99o+AoA7nd78bT7A0l4iISPbkcwuO5KnKyqoaLTiJ6m8iJkzoR4cOwWKbCxZs4IMPvsx2eCIiIkpwJHXvv/8la9ZsBaBHj9aMHp18csLmzUs54YTq2m+NphIRkcagBEdSVnN5hgGUlNTe5aTh4iIi0tiU4EjK6lt/E3H00QNo1Soo9/r009XMnBlf1y0iIpJZSnAkJRs3bueNN5ZGXx9xRN0JTuvWZRxzzMDoa7XiiIhItinBkZRMnbqIHTuCCfvGjOlGr15t6zgjoG4qERFpTEpwJCWpdk9FHHfcIMrKgm+3d99dwcKF6+s4Q0REJH1KcCQlkydXDw8/+uiBtRxZU8eOLTn88H7R148//nlG4xIREYmlBEfqbeHC9cyaFSzP0LJlMw46KLVlF045pXpRd3VTiYhINinBkXqLbb059NA+tGyZ2kTYJ544ODqk/LXXFrNiRXkdZ4iIiKRHCY7UW12rh9ele/c2HHxw0OrjDk8+qW4qERHJDiU4Ui+VlVVMmRK7PEP9C4xjqZtKREQagxIcqZfp01ewbt02AHr1asOoUV3Tus7JJ1evLv7ii1+wbt3WjMQnIiISSwmO1Et891S6K4L37dueffbpCUBFRRX/+c+8TIQnIiJSgxIcqZeG1t/Eip3079FHZzfoWiIiIokowZE6bdiwjTffjF2eoV8tR9ctNsF57rkFlJdvb9D1RERE4inBkTq9/PIiKisdgD337E737m0adL1hwzozalQXALZureC55xY0NEQREZEalOBInTLZPRWhtalERCSblOBInbKT4FQPF//Pf+aybVtFRq4rIiICSnCkDvPmrePzz9cB0Lp1M8aN652R6+6+ezcGDuwAwIYN23nppS8ycl0RERFQgiN1eOGF6sn9xo/vS4sWqS3PkIyZqZtKRESyRgmO1Cob3VMRsQnOE098TmVlVUavLyIiTZcSHEmqoqKKF1+s7jrKdIKz//696dUrGJG1atUWXnttSUavLyIiTZcSHEnq7beXsX59sDxDnz7tGDGic0avX1JinHyyuqlERCTzlOBIUjW7p/qnvTxDbeLrcNw94/cQEZGmRwmOJDV5cuzq4QOyco9DDulD584tAVi8eCPvvLM8K/cREZGmRQmOJLRu3Vb++99lAJjB4Yc3bHmGZMrKSvnKVwZHX6ubSkREMkEJjiT00ktfUFUVdBftvXcPunZtnbV7xU769+ijs9VNJSIiDZZSgmNmC83sejMbmK2AJD80RvdUxJFH9qdNmzIAPv98HZ98siqr9xMRkeKXagtOX+BqYI6ZvWhmXzOzllmIS3LI3Xn++fnR19lOcFq2bMZxxw2KvlY3lYiINFSqCc43gDfC8yYAdwPLzOwvZrZPpoOT3Jg7dx0LFmwAoE2bMg44IDPLM9RGsxqLiEgmpZTguPs/3P1gYBjwa2Ap0AH4NvCWmX1kZpeZWdfMhyqNJXZ4+IQJfWnevDTr9zz22EHR+3z44Urmzl2X9XuKiEjxSqvI2N0/d/efAf2AY4HHgB3AbsDvgcVm9rCZHWvZmDxFsqox628i2rVrzlFH9Y++fvxxteKIiEj6GjSKygPPufvpQG/gMuBDoDlwCvBvYJGZ3Whmg5JfSfLFjh2VNVb2PvroAY12b3VTiYhIpmRsmLi7r3H3W4CLgdcBCx+9gZ8As83scTMbkal7Sub997/L2LhxOwD9+7dn6NBOjXbvr3xlCKWlQYPfm28uZenSTY12bxERKS4ZSXDMrJuZ/dDMPgbeBMaFu6YDPwNeIkh2TgTeNbMDM3Ffybz41cMbs4exS5dWjB/fN/pa3VQiIpKutBMcMys1sxPN7AlgMfB/wChgPfAnYA9339fdf+3uRwLDgeeBVgQFypKHnn9+QfTr2JqYxqJuKhERyYSUExwzG2VmvwOWEBQXfwUoA14FzgF6ufsP3P2j2PPc/XPgNGAbsGdDA5fMW7NmS3QtqJIS47DDsrM8Q21OOqk6wZk6dRGrVm1u9BhERKTwpTqT8dvAR8DlQHfgS+C3wDB3n+Du97n7tmTnu3s5sALI3rz/krYXX/yCyCoJ++zTk86dWzV6DL17t43Ou1NZ6fz733MbPQYRESl8qbbgjAUceI5glFQfd/9J2DpTXzcDN6R4X2kENetvGr97KkLdVCIi0lCpJjjXAv3d/Th3f8LdK1O9obv/0d2vT/U8yS5336nAOFdOPrk6wZk8eWF0VJeIiEh9pTqT8S/cfUm2gpHcmT17LV98sREIJt3bb79eOYtl8OCO7L57NwC2b6/kmWfm5SwWEREpTKnW4JSaWT8zq3NxIjPrHR6bsbl2JHtiW28OO6wfZWXZX56hNuqmEhGRhkg1+TgTmE/9amh+Hx57aqpBAZjZaWZ2q5lNM7MNZuZmdm+a1+pjZneZ2VIz22ZmC8zsD2aWcBa78F7JHm/V435mZi/EnNMsnbgbU77U30TEJjhPPz2PrVsrchiNiIgUmlR/8Z4ZPt9Zj2NvC48/C3g4xfsAXA3sDmwimGcnrRmQzWwwwQro3YEngZnAvsClwEQzG+fuqxOcuhCYlGD74nrc9nsEq61vBVqmEXaj2r69kpdfXhR9ncv6m4hRo7oydGgn5sxZS3n5Dl54YSEnnDA412GJiEiBSLUFZzegAni7Hse+Hh47JtWgQpcTrFreHrgkzWsA/IUgufmBu58Ujvo6jGA013DgxiTnLXD36xI8/l7bzcxsOPAb4HcEQ+Lz3ptvLqW8fAcAAwd2YPDgjrkNCDCzuG6q2TmMRkRECk2qCU5vYEN9Rk+5ewXBrMZ11uskOf9ld5/jHpmZJXVh681RwALgz3G7rwXKgXPMrE2694i7XzPgHmBeeP2CkMvlGWoTm+A8+eRcduxIedCeiIg0UakmOJuB9vWpKTGzMoLWl1yO8Z0QPk9296rYHe6+kaCVqTWwf4JzO5rZhWb2MzP7rpklOibe1QSzNJ9f24SH+SY2wWnM1cPrss8+PenTpx0Aa9duZerU+vQOioiIpJ7gzCSo25lYj2MnEizhkMu+heHhc7IYIsNzhiXYtztBrdGNBGtrvWlmH5jZ6EQXMrN9gKuAX7v79FSCNLOLzGy6mU1fuXJlKqc22KpVm3n33aAnrbTUmDChbx1nNB51U4mISLpSTXAeJ1gV/GYz65nsIDPrBfyBYNbjJ9INLgM6hM/rk+yPbO8Yt/0mghXRuwHtgH2ARwiSnpfMbJfYg82sFUHX1CekMUuzu9/u7mPdfWy3bt1SPb1BYpdn2G+/XnTsmF810bEJzuOPf05VVdo9liIi0oSkmuD8hWB00SDgQzO7Mlx8s1342M3Mfgx8AAwkGHF0a0YjbgTufoW7v+Huq9x9k7tPd/fTgUeBrsCVcaf8luAzOc/ddzR2vA1Rc/XwATmLI5mDDtqFbt2CNbGWLy/nrbeW5jgiEREpBKnOZLwZOI5gJfFuBKOFPgLWhY8PgV+F+5YAx7n7psyFm7JIC02HJPsj29fV83q3hc+HRDaY2aHAd4FfuvuHqQaYS/m0PEMypaUlnHjikOhrTfonIiL1kfIsw+7+KUFXze8IVhO3uMcK4P+A3d19RuZCTcus8DlRjQ1ApP+jvsUdkQKZ2FFXexK87+vjJwUEIjPm7Qi37VHP+zSKzz5bzZIlQf7ZoUML9tknaa9jTsXPatyAgXUiItJEpDXDrruvBX4M/NjM+gM9wl0r3H1hpoLLgJfD56PMrCR2JJWZtSOos9kM1Dk7cSgykip2caQZJJ/48EygLXAXQT1SogkFc2by5Op/qsMP70ezZvm5qsZhh/WjffvmbNiwnfnz1/PhhyvZY4/uuQ5LRETyWIOXEAgTmpwmNeGQ9MHADnefG9nu7nPNbDLBXDjfpWY90PUELTF/c/fymGuNAT6Lr6UJt0cmBYwuGeHuU4ApSeI6giDB+XY4L1BeyffuqYgWLZpx/PGD+de/PgOC0VRKcEREpDZ5u0aSmZ0EnBS+jPSdHGBmk8KvV7l7pNh3F+AzgkRrQNylvkOwVMMtZnZ4eNx+BHPkzCYY2h3rh8AJZjYNWARsI1gmYiJQCtwB3N+gN5cHtm2r4JVXYpdnyP36U7U55ZShMQnOHG644aAcRyQiIvks7QTHzPoQLN3QiWC+m6Tc/e40brEHcF7ctkHhA4JkJn40U6J7zzWzsQTDtycCxwLLgD8C14fdbbGeIJigcAxwGMFaUquBZ4E73P2pNN5L3nn99aVs2RI0Kg0Z0pGBAzvmNqA6TJw4gJYtm7F1awWffLKaWbPWMHx451yHJSIieSrlBMfM9iNIDvZJ4bSUExx3vw64rp7HLiAo9E22fxFwQT2v9QQZmrvH3Qdk4jrZUCjdUxFt2jRn4sQBPPHE50DQivPTn+6X46hERCRfpZTgmNnewEsErRpGMM/NEoJVs6WAFFqCA0E3VXWCM1sJjoiIJJVqC851QCvgY+ACd38v4xFJ1n35ZTnvv/8lAM2aleTV8gy1OeGEwTRrVkJFRRXTp6/giy820K9f+1yHJSIieSjVccEHEgx3/pqSm8I1ZcoX0a8POKA37du3yGE09dexY0sOP7xf9PXjj2vSPxERSSzVBKclsCkPJvCTBqjZPZXfo6fixU/6JyIikkiqCc7nQAszy9vh5VK7QlieoTYnnjgEC8vJp01bzIoV5bWfICIiTVKqCc4/gObAiVmIRRrBJ5+sYtmyICno1Kkle+/do44z8kuPHm046KA+ALjDU0/NreMMERFpilJNcG4BJgO3mdkBWYhHsix29fAjjuhHaWl+Ls9Qm5rdVPVdRkxERJqSVLuargbeBvYFXgtn+30H2FjbSe5+Q3rhSabFrj9VaN1TESefPITLLw+WGXvxxS9Yt24rHTu2zHFUIiKST9IZJu5UT6p3CHBwLcdbeLwSnDywZcsOXn11cfT1kUcWVoFxRP/+Hdh77x68++4Kduyo4umn5/G1r+2a67BERCSPpJrg3E2QsEgBeu21JWzdGizPMHx4Z/r375DjiNJ3yilDeffdFQA8+ugcJTgiIlJDSgmOu5+fpTikERTy8PB4p5wylKuueg2A556bT3n5dtq0aZ7jqEREJF8UXoWppK0Y6m8iRozoEl1sc8uWiujMzCIiIqAEp8lYtmwTH320EoCyshLGjy+M5Rlqs9de3aNff/bZmhxGIiIi+SatBMfMBprZLWb2mZltMrOKuP0dzewaM/u5mZVlJlRpiClTqltvDjywN23bFn53zq67dol+/emnq3MYiYiI5JuUZyQ2s5MJio1bUz2aqkbhsbuvM7PDCEZYfQo82sA4pYGKqXsqYuTI6gTns8+U4IiISLWUWnDMbARwH9AGuJ1gmPiqJIffQZAAHd+QAKXhqqqcF15YEH1dPAlO5+jXSnBERCRWqi04PyJYcPNmd78CwMwqkxw7JXzeN83YJEM+/nglK1ZsBqBLl1bstVdhLc+QzJAhnWjWrISKiiq++GIjmzZtL4quNxERabhUa3AOJ+iO+m1dB7r7CqAcKPxq1gIXOzz8yCP7U1JiyQ8uIM2blzJkSMfo65kzVWgsIiKBVBOcnsDGMHmpj20Ei3NKDtWsvyns+W/iqdBYREQSSTXBKQfamFlpXQeaWTugI6A/q3No8+YdTJsWuzzDgNwFkwUqNBYRkURSTXA+Cc/Zux7Hnhke+26qQUnmvPrqYrZtC8qkdt21C336tMtxRJmlFhwREUkk1QTnIYKRUb8ws6Tnmtlo4NcE9Tr3pR+eNFTN5RkG5CyObKk5kkqNhSIiEkg1wfkb8BFwBPBiOCdOMwiSGjM73sz+DLwFdAZeBx7MYLySomJafyqR4cM7Y2HN9Ny566KLiYqISNOW6mKbO8xsIvAUcCjBPDgRH8R8bQRJzinurtXHc2TJko188knQbdO8eSmHHNInxxFlXuvWZQwY0IH589dTVeXMmbOW0aO75TosERHJsZSXanD35cCBwEXAG8AOgoTGgCrgbeAS4BB3TzYJoDSCF16oHj110EG7FO1q26rDERGReGmtReXuFe7+d3c/mGBW4x5AL6CVux/g7n9zd/UV5Fixd09FaEZjERGJl/JaVPHcvRJYmYFYJIOC5RmKb/2pRNSCIyIi8dJqwZH8t3VrBRdfvDv77tuTnj3bsPvu3XMdUtbUnAtHI6lERAQsWQ2wmUUKiDe7+/S4bSlx91fTC6/pGTt2rE+fPj2j19yyZQetWpVl9Jr5ZP36bXTseCsAZWUlbN58Gc2aKXcXEWkiEq4/VFsX1SsE89jMAnaN25YKr+M+kmXFnNwAdOjQgt6927J06SZ27Khi3rx1DBvWue4TRUSkaNWWeHxBkJwsTbBNJK/sumsXli7dBAR1OEpwRESatqQJjrsPqM82kXwwcmRnpkwJiqo/+2wNJ52U23hERCS3VKggRUEjqUREJJYSHCkKWlVcRERipVT8a2adgeOBte7+7zqO/QrQEXjK3delG6BIfcS24MycuYaqKqekJGFhvYiINAGptuCcC/wD2Ksexx4SHvv1VIMSSVW3bq3p0qUVAOXlO1i0aEOOIxIRkVxKNcE5OXx+oB7H3kUwNv2UFO8hkpaaSzZowj8RkaYs1QRnMLDV3WfVdaC7fwpsBYakE5hIqlRoLCIiEakmOF2BLSkcvxko3jUCJK+o0FhERCJSTXDWAh3NrH1dB5pZB4Ii4/VpxCWSMrXgiIhIRKoJzrsEdTXn1OPYc8Lrf5DiPUTSEl+Dk2ydNRERKX6pJjj3ECQ4vzGzI5MdZGZHAb8mWNbhnvTDE6m/Pn3a0bZtsO7W2rVbWbFic44jEhGRXEkpwXH3B4EXgdbAs2b2HzP7rpmdED6+Z2bPAM+Ex0x193szH7bIzsxMdTgiIgKkN5PxqQQJTAlwLHAL8ET4+CMwMdz3LNXDylNmZqeZ2a1mNs3MNpiZm1layZKZ9TGzu8xsqZltM7MFZvYHM+uU5Hiv5fFWguP3MLPrzOx1M1tmZtvNbImZ3W9m9ZkzSDJEdTgiIgIpzmQM4O4bgOPN7BiCif/2B3qEu1cAbwF3u/uzDYztamB3YBOwGBiRzkXMbDDwBsForieBmcC+wKXARDMb5+6JfhMuBCYl2L44wbbbgP0IapQeC2PeAzgLOM3MznT3x9KJX1JTsw5HCY6ISFOVcoITESYwDU1ianM5QTLxOXAo8HKa1/kLQXLzA3e/NbLRzG4K73EjcHGC8xa4+3X1vMd9wNfd/fPYjWb2NeBe4HYz+4+7b08jfknBrrt2jX6tFhwRkaYrbxfbdPeX3X2ON2AoTNh6cxSwAPhz3O5rgXLgHDNrk3aggLvfGp/chNvvA+YAXYDRDbmH1I9mMxYREcjjBCdDJoTPk929KnaHu28EXicoht4/wbkdzexCM/tZWEid6Jj62BE+V6R5vqRg4MAOtGhRCsDy5eWsXbs1xxGJiEguJO2iMrNzwy/Xu/uTcdtS4u53p3NeBgwPn2cn2T+HoIVnGMHosFi7A3fGbjCzD4Fz3P3j+tw8TIp2BZYAM2o57iLgIoB+/frV59KSRGlpCcOHd+ajj1YCQR3OgQfukuOoRESksdVWgzOJYB6bWQTFubHbUpWrBKdD+JxsNuXI9o5x228CHiVIjLYSFDj/D3Aa8JKZ7eHuS2q7sZl1pvp9X+7ulcmOdffbgdsBxo4dq9npGmjXXbtEE5xPP1WCIyLSFNWW4LxKkMx8kWBbUXP3K+I2TQdON7NHCIbJX0lQoJxQWNPzJDAU+K27P5ytWGVnGkklIiJJExx3H1+fbXku0kLTIcn+yPZ19bzebQQJziHJDgiTm6eBg4Cb3P1/6nltyZDYuXBUaCwi0jQlLTI2s2vMLGkrRYGYFT4PS7J/aPicrEYn3srwOeGoKzNrRzB0/lCClpv4liBpBLGzGWuouIhI01TbKKrrgB/FbjCz+Ylm8s1jkblzjjKzGu81TEbGAZsJJiesj8hIqnnxO8LV0ycDBwM3quUmd4YO7URpqQGwcOEGyss1/ZCISFNTW4LjCfb3B/JumI+ZlZnZiHDemyh3n0uQdAwAvht32vUELTH3uHt5zLXGmFlZgnuMIZgUEILJ+2L3dQKmECRA17r71Q17R9IQzZuXMmRI9SocM2eqm0pEpKmprch4DdDFzNqFc8Y0KjM7CTgpfNkzfD7AzCaFX69y9yvDr3cBPiNYXmFA3KW+Q7BUwy1mdnh43H4Ec+TMBq6KO/6HwAlmNg1YBGwjGEU1ESgF7gDujzvnMWAsMBcoMbPrErylJ9z9g+TvWDJp1127MGtWkNh89tka9t67Zx1niIhIMaktwXmLYDHNp8zsYYL1lQBapTofTprz4OwBnBe3bVD4gCCZuZI6uPtcMxsL3ECQpBwLLCNYGPR6d18bd8oTQHtgDHAY0BJYTVBbc4e7P5XgNgPD58EEMyQnsgD4oK54JTNGjuzM448HX6sOR0Sk6aktwbmBoJXjUGqOGmoP/CPF+6Sc4ITrQF1Xz2MXAFbL/kXABfW81hMESU69ufuAVI6X7IstNNZQcRGRpqe2YeLvmNkeBDPsjgJaAeMJlh54szGCE0lX7FBxteCIiDQ9ta4mHi4g+ePIazOrAta4+4TkZ4nk3vDh1UXGc+euY9u2Clq0qPXbXUREikht8+D0M7P4Oe4XEhTeiuS1Nm2aM2BAewAqK505c+JLrUREpJjVNkx8AfB23LZJwIPZCkYkk2rW4WiouIhIU1JbggM7F+5eC2h2XikIqsMREWm6aktwtpB4Daeko5VE8olGUomINF21JTizgZZm9gMza91YAYlkilpwRESartoSnDsJWmtuBjaaWWW4vYeZVabwqMj6uxBJYOTIztGvZ89eS0VFVQ6jERGRxpQ0wXH3PwE/B1YRJDqRrilL8VFXnY9IVnTs2JJevYKF37dtq2T+/PU5jkhERBpLXfPg3AjcaGbdgNbAfGAlsG8jxCbSYCNHdmHZsmAt1c8+W83QoZ3qOENERIpBvWY+c/eVAGYGUOnuC7MZlEim7LprF1566QsgqMP5yleG5DgiERFpDKlO7ToB2J6NQESyIbYORyOpRESajpQSHHefmq1ARLIhdiSVJvsTEWk6ai0ANrObzOy6JPtGmtmYOs5/1MxebEB8Ig0SPxeOu+cwGhERaSx1jXC6jGA18UReAt6r4/wDCVYgF8mJ7t1b07lzSwA2bdrB4sUbcxyRiIg0hoYO4dasxpLXzKxGK44m/BMRaRo0R40UPdXhiIg0PUpwpOjFjqRSC46ISNOgBEeKXs0WHCU4IiJNgRIcKXrxNTgaSSUiUvyU4EjR69u3HW3alAGwZs1WVq7cnOOIREQk25TgSNELRlKpDkdEpCmpz0zG3cxsXoLtXQGS7Iuem1ZUIhk2cmQXpk9fAQQjqcaP75fjiEREJJvqk+CUAgNq2V/bPgAVPEjOxRYaqwVHRKT41ZXgXN8oUYhkWfySDSIiUtxqTXDcXQmOFAW14IiINC0qMpYmYeDADjRvXgrAsmXlrFu3NccRiYhINinBkSahWbMShg/vFH2tJRtERIqbEhxpMlSHIyLSdCjBkSZDSzaIiDQdSnCkydBkfyIiTYcSHGkyarbgqAZHRKSYKcGRJmPo0E6UlBgACxasZ/PmHTmOSEREskUJjjQZLVo0Y8iQjgC4w6xZasURESlWKSU4ZvaD8NE7WwGJZFPsSCrV4YiIFK9UW3BuBn4HrMpCLCJZpzocEZGmoT6LbcZaBTRz9+3ZCEYk2zSSSkSkaUi1Bec9oIOZdctGMCLZprlwRESahlQTnFvCc36ehVhEsm7EiOoWnDlz1rJ9e2UOoxERkWxJKcFx92eBK4GLzeweM9s9O2GJZEebNs3p3789AJWVzuefr81xRCIikg0p1eCY2bzwywrgq8BXzWwLsBpI9qewu/vg9EMUyayRIzuzcOEGIKjD2XXXrjmOSEREMi3VIuMBCba1Dh/JeIr3EMmqkSO78NxzCwCNpBIRKVapJjgTshKFSCOKLTTWSCoRkeKUUoLj7lOzFUgsMzsNOBTYA9gdaAfc5+5fT+NafYAbgIlAF2AZ8ARwvbvvVIBhZrW1OP3X3fdPcp/jCeqT9gRKgU+Av7j7P1ONWbIrdrI/jaQSESlOqbbgNJarCRKbTcBiYEQ6FzGzwcAbQHfgSWAmsC9wKTDRzMa5e6LfcAuBSQm2L05yn+8BtxLUIt0LbAdOAyaZ2Wh3vzKd+CU7YufCmTlzDZWVVZSWatUSEZFiknaCY2bNgL2BvkBrd787Y1HB5QTJxOcELTkvp3mdvxAkNz9w91sjG83spvAeNwIXJzhvgbtfV58bmNkAgtmd1wBj3X1BuP0G4B3gCjN71N3fTPM9SIZ17tyKHj1as2LFZrZtq2TBgg0MHtwx12GJiEgGpfVnq5n9D7CcoHXkQeAfcfs7mtmnZvZ5OutWufvL7j7H3dMuUA5bb44CFgB/jtt9LVAOnGNmbdK9R+hCoAXwp0hyAxB2f/1v+DJREiU5pDocEZHilnKCY2b3Efzi7gTMJxgyXoO7rwOmAgOBsxoWYtoiBdGT3b0qdoe7bwReJxj9laimpqOZXWhmPzOz75pZwrqb0GHh83MJ9j0bd4zkCdXhiIgUt1RXEz8LOJug9eZAdx9C0DWTyH2AAUc0KML0DQ+fZyfZPyd8HpZg3+7AnQRdWH8C3jSzD8xsdCr3cfdlBC1Ffcws6VB6M7vIzKab2fSVK1cmO0wySEs2iIgUt1RbcL5BMK/NZe7+3zqOnQ5UAbulE1gGdAif1yfZH9neMW77TcA4oBvB6K19gEcIkp6XzGyXNO/TIcl+3P12dx/r7mO7ddMyX40htgUnX7uonnzyc4YO/TvHHfcoTz75ORUVVXWfJCIiQOpFxnsSJDhP1XWgu281s/UEiULBcPcr4jZNB043s0eAUwmGgl/e6IFJRtVswVmDu2NmOYyopsrKKr7znSksXbqJzz9fxzPPzKdPn3ZcdNEYvvGN0fTu3TbXIYqI5LVUW3DaAhvdfVs9j29O8iUcsq2ulpPI9nX1vN5t4fMhad4nWQuP5ECPHq3p2LEFABs3bmfJkk05jqimKVMWsnRpzZgWL97INde8Tr9+f+O0055kypSFVFVponARkURSTXBWAu3NrF1dB5rZUKANSeaOaQSzwudENTYAQ8PnZDU68SLFMfGjrpLex8x6hccvdvfN9byPNAIzy+s6nH/+85Po13vv3YNu3VpFX1dWOo8+Oocjj3yYESPu4qabprN69ZZchCkikrdSTXBeD59Pr8exPyLozkp3DpuGitz3KDOr8T7DBG0csBl4q57Xi4ykmhe3/aXweWKCc46JO0bySL7W4axfv43HH/88+vrOO49m0aJvc//9x3PIIX1qHDtnzlquuOIVdtnlNs477xneemspDZhdQUSkaKSa4NxKMDLql2aWsHjYzFqY2Y3ANwkSnD81LMTamVmZmY0I572Jcve5wGSCBUK/G3fa9QQtK/e4e3nMtcaYWVmCe4whGFEFwUzFsf4BbAO+F076FzmnE/Cz8OVtSN6Jr8PJFw8/PIutW4PZF3bfvRu7796dFi2acdZZI5g69SxmzDif739/T9q3bx49Z9u2Su6++1MOOOBf7Lnn3fztbx+yadP2XL0FEZGcs1T/2jOz3xC0zmwBpgCHA62APwL9gPEEc+QYcLW7/2/iK9V6j5OAk8KXPYGjCVpOpoXbVkWWPwiTivnAQncfEHed+KUaPgP2I5gjZzbBUPfVMcdPAk4I77OIIHEZQdA6UwrcAXw7fgJCM/s+cAvBUg0PUr1UQx/g96ks1TB27FifPn16fQ+XBnj22Xkce+xjABx8cB9efTVXUzbVdMghDzBtWtCze9NN47n88rEJjysv384DD8zir3/9gHffXbHT/nbtmvP1r4/kkkv2YPTogqr1FxFJRcIRIiknOABmdinwC4Ki4wiPuUk58FN3T6v1xsyuI5htOJloMlNbghPu78vOi20+ToLFNsPE6lxgDEFS1JIgaZkO3OHuSUePmdkJBCOs9iJoGfuUYHbjlBbbVILTeBYuXM+AAXcA0LVrK1aujG/oa3zz5q1j8OC/A1BaaixZcjE9etQ92fY77yzjtts+5P77Z7Jly05zb3Lggb255JI9OO20YbRsma9L0ImIpCVzCQ6AmXUgGDZ9INCL4Jf6CuBN4GF3z582/wKiBKfxVFU57dr9kc2bg4Tgyy+/Q7duSedjbBTXXfc6118fLFt23HGD+M9/Tknp/LVrt3L33Z9w220fMnPmzv8Fu3RpxQUXjOLb396dIUM6ZSRmEZEcSy3BMbNzgS3u/nA2o5KalOA0rrFj74l270ydeiaHHNI3Z7FUVTlDhvyd+fODGQUeeugETj99eB1nJebuTJ26iNtu+5DHHpvDjh07TxJ45JH9ueSSPTjhhME0a6bV1EWkYCVMcGr7qTYJ+EONK5i9ZGZKeKRo5NNIqtdeWxxNbjp2bMEJJwyu44zkzIzx4/vxwAMnsGjRt7nxxoPo3799jWNeeGEhp5zyJP373851173OkiUbGxS/iEg+qS3B8QT7xxMMrxYpCiNHdo5+neuRVLFz35x11oiM1cr06NGGn/1sf+bO/Sb/+c/JHHfcIGInbV66dBPXX/8m/fvfzimnPMm77y7PyH1FRHKptgRnA9DFzFo0VjAijS12qHguW3A2b97Bww9Xzzl53nmjMn6P0tISjjtuMP/5zynMn/8tfvaz/ejevbrmqLLSefzxORxyyAOsXbs14/cXEWlMtf2J+B5Bi80/zOxeIDJvfHMzO5gkfV6JuPuraUcokkWxXVS5nM348cfnsHFjMG/NsGGd2G+/Xlm9X//+HbjxxoO59toDeeKJOfz1rx/yyiuLANi8uYJ33lnOUUcNyGoMIiLZVFuC8xvgUODM8BHRCXglhXt4HfcRyZnBgztSVlbCjh1VLFmyifXrt9GhQ+M3WsZ2T5133qhGW/izefNSzjhjBGecMYJvfet5/v73jwH46KOVSnBEpKAlTTzcfbKZTQC+D4wimMxvAFBF7taXEsmoZs1KGDasE598ErTezJy5JuutJ/GWLNnIlCkLATCDc87ZtVHvH7HHHt2jX3/88cpajhQRyX+1tqy4+zSqZw/GzKqAle4+MNuBiTSWXXftEk1wPvtsdaMnOPfe+ymR2RoOO6wfffu2r/2ELBk9umv0648+WpWTGEREMkWTX0iTl8uh4u5eo3vq3HMzX1xcX7HLOXz66Wp27KjMWSwiIg2VUoLj7iXu3jtbwYjkQs1FNxs3wZk+fXl0eHqbNmWccsrQRr1/rE6dWtK3bzsAtm+vZM6ctXWcISKSvzLagmNmXc1sopmdaGad6z5DJPdy2YIT23pz2mnDaNu2eS1HZ5+6qUSkWKSU4JjZ/mb2LzP7nwT7vk6w4vfTwGPAF2b21cyEKZI9w4Z1oqQkGLU0f/56tmzZ0Sj33batgvvvnxl9nY25b1I1Zkx1N5UKjUWkkKXagvN1giHjG2I3mtkQ4C6C1cUrgG1Aa2CSme2WgThFsqZly2YMGtQBAHeYNatxumaefnoea9YEE+r179+eQw/N3TpYEbEJzkcfKcERkcKVaoJzUPj877jt3yYYkTUV6AJ0BB4Kt13agPhEGkUu6nBiu6fOOWfXaCtSLtXsolKCIyKFK9UEpydQCSyJ234cwYR+17r7JnffDkS6sQ5tWIgi2dfYdTgrV27mmWfmR1/ncvRUrOHDO1NWFvxY+OKLjaxfvy3HEYmIpCfVBKczsNE9MmsHhMXEIwi6raJz5rj7QmAz0CcDcYpkVWO34Nx//0wqKqoAOPDA3gwd2inr96yPsrLSGsme6nBEpFClmuCUAx3MLHaoR6SF5s3YxCe0naDFRySvxa4q3hgtOPky900iNQuNNZJKRApTqgnOpwSLbJ4as+18gu6pV2IPNLO2QAdgWfrhiTSOESOqWy3mzFmX1UnuZsxYyXvvrQCgRYtSzjxzeNbulY4xY1SHIyKFL9UE5yGCBOd2M/uzmT0GnEAwcurBuGMPDI+d0+AoRbKsXbvm0UnuKiqq+PzzdVm7V2zrzYknDqFjx5ZZu1c6Ymc0VoIjIoUq1QTnL8CrQBvgYuCkcPsNYc1NrLMIWnZeakiAIo2lMepwKiqquPfez6Kv82Hum3jxXVQ79zyLiOS/VJdq2AEcDpwH3Ab8Bhjv7jfGHmdmZQSrjz/FzkPKRfJSY4ykeuGFBSxfXg5Az55tOOqoAVm5T0P06tWGzp2DVqWNG7ezcOGGOs4QEck/ta4mnoi7VwL3hI9kx+wAzm5AXCKNrmYLzpqs3CO2e+prXxtJs2b5t96tmTFmTDdeeWURELTiDBjQIcdRiYikJv9+uorkSLZHUq1bt5Unnvg8+jofu6ciNKOxiBQ6JTgiodguqpkz11BZWZXR6z/00Cy2bQtGZ+25Z/caxbz5RjMai0ihSznBMbNSM7vYzKaY2XIz22ZmlbU8KrIRuEimdenSiu7dWwOwdWtFxmtPYrun8rn1BrTopogUvlRXE28HvAH8GTgM6A6UEQwHT/ZQK5EUjNhuqkyOpPr887W88cZSAJo1K+Hss0dk7NrZMGpUFyxcGmvWrLVs3aq/U0SksKSafFwD7EMwQ/GfgCOAkcDAOh4iBSFbhcZ3313denPMMQPp3r1Nxq6dDW3aNGfw4I4AVFV5o8zuLCKSSamOojqVYG6bS9x9UubDEcmtbAwVr6py7r770+jrfO+eihgzplt0wsOPP17JXnv1yG1AIiIpSLUFpzfBrMX3ZSEWkZzLxmR/r766KFrP06lTS44/flBGrpttKjQWkUKWaoKzEtgSznMjUnTiW3AyMYtvbHHx2WePoEWLlKefygktuikihSzVBOc5oJ2ZjcxGMCK51qtXGzp0aAHAhg3bWbasvEHXKy/fziOPzI6+LpTuKdBcOCJS2FJNcG4A1gJ/DJdjECkqZpbRCf8ee2wOmzYFDZ4jRnRmn316Nuh6jWnQoI60bh20Nq1YsZkvv2xYsici0phSTXAMuBAYC0w3s/PMbJSZ9avtkfmwRbInk3U48XPfWGTsdQEoKTF22626DkfdVCJSSFItBpgf83UH4K56nONp3EckZzI1kmrRog289NIXAJjB17++a4Nja2xjxnTj7beXA0E31eGH989xRCIi9ZNq4pHOn5+F8yerCJlrwbn33s+I1Cgffnh/+vRp19DQGl3schJqwRGRQpJSguPumpVYil4manDcvaCWZkhmzBgNFReRwqSERSRO//4daNUqyP1XrtzCqlWbU77G228vZ9asYCbktm3LOPnkIRmNsbHEtuB88snqjC9AKiKSLUpwROKUlBgjRsSuSZX6kg3//OeM6Nennz6cNm2aZyS2xtalSyt6924LBAuQRmY2FhHJd0pwRBJoSB3Otm0VPPDArOjrQu2eilA3lYgUorRGN5lZK+A0YBzB8g1tSF5M7O5+eHrhieRGQ0ZS/fvfc1m7disAAwa05+CD+2Q0tsY2enQ3nntuARAkOKefPjy3AYmI1EPKCY6ZHQb8C+hGkNRE5rKPTXBitzV8rnuRRtaQVcVji4vPPXcUJSWFPZBQSzaISCFKKcExsyHAkwQtNlOAp4GbgfXAFUAP4AhgArAKuB7YlMF4RRpFuiOpVqwo59lnq6eLOvfcwu6eAi26KSKFKdUanB8RJDf3uvtR7v7HcPsWd7/L3X8VdkdNBFoCFwAPpBOYmZ1mZrea2TQz22Bmbmb3pnmtPmZ2l5ktNbNtZrbAzP5gZp3qef7V4f3dzI5Ickx3M/utmc0ws41mttrM3jWzH5lZ4U2A0sQNHtyRsrLgv8fixRvZuHF7vc77178+o7IyaLQ86KBdGDy4Y7ZCbDQjRnSmWbPgs5g/f329PwsRkVxKNcE5jKDL6Ze1HeTuk4HLgL2AK9OKDK4GvgfsASxJ8xqY2WDgXYJk622CFqd5wKXAm2bWpZbTMbO9gGuopSXKzAYAHxMkgCuB2wi68doCvwVeC+uWpECUlZUydGh1/jtzZv1ace6++9Po18XQegPQokWzGqPKZsxQN5WI5L9UE5xdgO3uPjtmWxVBa028fwEVwBlpxnY5MAxoD1yS5jUA/gJ0B37g7ie5+0/c/TCCRGc4cGOyE82sJXAP8A7weC33+FF4j+vcfYK7/8jdvw/sCrwEjAFOb8B7kBxItZvqo49W8sEHXwLQsmUzzjijeIpx1U0lIoUm1QRnGzu3ZGwEOphZjYk+3H0rUA4MTCcwd3/Z3ee4e9pFymHrzVHAAuDPcbuvDeM7x8zaJLnErwjiP58gkUtmUPj8VOxGd68kqFOCoChbCkiqhcaxc9+cdNIQOnRokZW4cqFmobESHBHJf6kmOIsJkpnY4uS54fPY2APNrCfBgpy5HEIyIXye7O41EhR33wi8DrQG9o8/MRwtdinwU3efU8d9IsNmjou7RglwDEFy9FLK0UtOpTJUvKKiivvu+yz6utDnvokXm+B89JG6qEQk/6Wa4HwKlAK7x2x7kSCJuSbs0iFszYkUIL/f0CAbINJHMDvJ/kjiMix2o5l1ACYB04Bb6nGf3wKzgF+Y2Ytm9n9m9keCxGcs8E13z+XnIGlIZbK/55+fz4oVwZIOvXq14cgji2vV7dguqo8/XkkDGlZFRBpFqgnOswTJzIkx224h6LY6ElhkZq8TtPScRlCQ/PsMxJmuDuHz+iT7I9s7xm2/FegMXFCfLjJ3/5KgFehxgkLsK4EfECRYDxEMqU/KzC4ys+lmNn3lSjX/54thwzphYfvjvHnr2bq1IumxsXPffP3ru1JaWlyThPfp046OHYMut3XrtrF48cYcRyQiUrtUfwo/Anyf6i4Z3H0JcAKwFOgCHAB0BbYAl7n7k5kJtXGY2anAOcCP3X1ePc8ZALwKjAaOJUisehEUR38NeMfMktYiufvt7j7W3cd266ZSnXzRqlUZgwZ1BKCqypk9e23C49au3cqTT86Nvi627ikAM6ux8KYKjUUk36WU4Lj7Jnf/s7s/GLd9KkEx7qEEv9CPB3Zx91szFml6Ii00HZLsj2xfB2BmnQmGeL8I/DWF+0wiSG5Odfdn3X2Duy93978BVxFMgHhtaqFLPqjPSKoHH5zJ9u2VAOy9dw9Gjeqa8LhCF7smlWY0FpF8l+pMxu3DL8vDEUJR7l5BULOSTyIrHg5Lsn9o+Byp0elH0Pp0OFBllrA++oVw++Xu/odwEr9DgTXu/lGC418On/dOMXbJA7vu2oX//CdoyEtWhxO/NEOxqllorBYcEclvqa5FtY5gRNBAYFHGo8m8SHJxlJmVxI6kChOTccBm4K1w82rgziTXOoQgIXqWoDsuMiY4Mjy+vZk1d/f4aV4jvxU0/WsBqmsk1ezZa3jrrWUANGtWwtlnj2i02BpbbBeVWnBEJN+lmuBsAircPa+SGzMrAwYDO9w9Wgzh7nPNbDLBXDjfJSgejrieYNmJv7l7eXj8IuCbSe4xiSDBucndo0XD7r7azD4DRgI/Dx+Rc1oSzMgMQbeXFJi6RlLFzlx83HGD6NatdaPElQu77VbdRTVz5hq2baugRYuU1+sVEWkUqf50mg8MN7NmYZdU1pjZScBJ4cue4fMBYaIBsMrdI8tA7AJ8BiwEBsRd6jvAG8AtZnZ4eNx+BHPkzCaokWmoHxBM6He1mR0Z3q8VwRw4/YHPgd9k4D7SyGKXKJg9ey0VFVXRdZmqqpx77qnunirG4uJY7do1Z+DADsyfv56KiipmzlzD7rt3z3VYIiIJpTqK6iGgjOrEI5v2AM4LH0eH2wbFbDutPhcJW3TGEhQC70ew6vlggnl69nf3+i8VnfweU4B9gHuB3gRraJ1PMFPyr4B9MnEfaXzt27egT59grdQdO6qYO3dddN8rryziiy+C4dJdurTiuOMGJbpEUak5o7G6qUQkf6XagvN/wFeAv5nZWnfPWreLu18HXFfPYxdQy4zJYdfTBQ2M53yCpCXZ/o8IhpdLkRk5snN03pdPP13N8OFBq07s0gxnnz2C5s1LcxJfYxozpitPPvk5oEJjEclvqSY4PyFYcmAkMNnMPgLeJFhBuzLZSe5+Q9oRiuTYrrt24YUXFgJBHc7JJw9l06btPPpo9Qoexd49FaG5cESkUNSa4JjZS8Bqd4+shH0dwezEkdaS3QlWyk56ifB4JThSsBKNpHr00dmUl+8AggRo77175CS2xqYuKhEpFHW14IwHlse8vpsgYRFpMhKtKh479815540iyZxJRWfIkI60bNmMrVsrWLp0E6tXb6FLl1a5DktEZCcpdVGFdSgiTUrsbMaffbaaBQvW8/LLwUwJJSXG1742MlehNbrS0hJGjerCu++uAIKFN8eP75fjqEREdlZcKwKKZEHXrq3p1i1opdiypYIbb3wruu+II/qzyy7tchVaTtSc0VjdVCKSn5TgiNRDbB3OXXdVj55qKsXFsUaPrp7wT4XGIpKvlOCI1ENsHU5VVVCG1q5dc046aUiuQsqZmoXGSnBEJD/Vpwang5nd1YB7uLt/owHni+RcbAtOxBlnDKd167IcRJNbsQnOjBmrqKpySkqaRpG1iBSO+iQ4LQlmDk5HZJi4EhwpaLGFxhFNsXsKoFu31vTo0ZoVKzazeXMF8+atY8iQTrkOS0SkhvokODsIJvMTabJiu6gABg3qwEEH7ZKjaHJvzJhu0ckPP/popRIcEck79Ulw1rj7hKxHIpLHevduS7t2zdm4cTsA557bdOa+SSQ+wTnllGE5jkhEpCYVGYvUg5lx6KF9AGjRopRzz901xxHlVuxIKs1oLCL5KNW1qESarNtuO5I77viIQw7py8CBHXMdTk7VnAtHI6lEJP8owRGpp112acd1143LdRh5YeTILpSWGpWVzty56ygv306bNs1zHZaISJS6qEQkZS1bNmPYsKCw2B0++WR1jiMSEalJCY6IpEXdVCKSz2pNcNy9xN17N1YwIlI4Ro+OndFYhcYikl/UgiMiaVELjojkMyU4IpKW+EU33T2H0YiI1KQER0TS0r9/e9q1C0ZOrVmzlWXLynMckYhINSU4IpIWM1M3lYjkLSU4IpK2mjMaK8ERkfyhBEdE0lazBUcjqUQkfyjBEZG0qYtKRPKVEhwRSdtuu1V3UX322Wp27KjMYTQiItWSrkVlZodk6ibu/mqmriUi+aNDhxb079+ehQs3sGNHFbNmrWG33brVfaKISJbVttjmK0AmJrbwOu4jIgVs9OiuLFy4AQhmNFaCIyL5oLYuqi9qeWwBLHxUAivCR2XM9s3hsYuyFLuI5AHV4YhIPkqa4Lj7AHcfGP8AbgLKgCnAYUBbd+8drlnVBpgATA6P+X14jogUKSU4IpKPUuo6MrNjgT8Ad7v7BfH73X0HMBWYamb/AP5oZp+7+3OZCFZE8k/NuXA0VFxE8kOqo6iuIKip+XE9jv2f8PnKFO8hIgVk2LDONG9eCsCiRRtZu3ZrjiMSEUk9wdkDWO/udbZDu/uXwDpgz9TDEpFC0axZCaNGdYm+1ozGIpIPUk1wmgPtzax9XQeaWQegfXiOiBQxdVOJSL5JNcGZEZ7zs3oc+1OgFPg41aBEpLCo0FhE8k2qCc6fCIaA/8jM7jSzofEHmNkQM7sD+BFBvc6tDQ9TRPLZ6NHVCY5acEQkH6Q0isrd7zOzA4DvAOcD55vZCmBpeEhvoEf4tQF/cvf7MxSriOSp2Bacjz9eSVWVU1JiOYxIRJq6lNeicvfvAecA8wmSmJ7AXuGjZ7htLvB1d/9B5kIVkXzVo0drunVrBcCmTTtYsGB9jiMSkaYurSUU3P0+4D4z24MgsYn8+bYSeM/dP8hIdCJSEMyM0aO78dJLXwBBN9WgQR1zG5SINGmpTvQXaZF5xN2XhonMB5kOSkQKz5gx1QnORx+t5MQTh+Q4IhFpylJtwbmZYL2p27IQi4gUsJpDxTWSSkRyK9UEZxXQzN23ZyMYESlcNYeKaySViORWqkXG7wEdzKxbnUeKSJOy665doiOn5sxZy5YtO3IckYg0ZakmOLeE5/w8C7GISAFr3bqMIUM6AlBV5Xz66ercBiQiTVpKCY67P0uweObFZnaPme2enbDAzE4zs1vNbJqZbTAzN7N707xWHzO7y8yWmtk2M1tgZn8ws071PP/q8P5uZkfUclwHM7vBzD4ys01h3DPM7G9mVpZO7CKFRDMai0i+SHUU1bzwywrgq8BXzWwLsJqg+DgRd/fBacR2NbA7sAlYDIxI4xqY2WDgDaA78CQwE9gXuBSYaGbj3D3pn5pmthdwTRhH21qOGwFMBnYBpgDPAmXAAOAMgpXY1WYvRW3MmG488shsQDMai0hupVpkPCDBttbhIxlP8R4RlxMkNp8DhwIvp3mdvxAkNz9w9+iyEWZ2U3iPG4GLE51oZi2Be4B3CCYvPCfJca2Bp4B2wDh3fytufzOSJ4AiRSN2JJVacEQkl1JNcCZkJYoE3D2a0JilN+V72HpzFLAA+HPc7muBi4BzzOwKdy9PcIlfAQMJWpKuquVWFwNDgUvikxsAd69IPXqRwqMuKhHJF6muRTU1W4FkSSQhm+zuVbE73H2jmb1OkADtD7wYu9/MDiPoxrrc3efUkWR9laCl6gEzGwAcA3QEvgCeq60LTKSYDBjQgTZtyigv38HKlVtYsaKcHj3a5DosEWmCUl6LqsAMD59nJ9k/J3weFrvRzDoAk4BpBCPHkgqLh3cnWKbiW+E1/wL8L3AvsNDMLkwjdpGCU1Ji6qYSkbxQ7AlOh/A52cp/ke0d47bfCnQGLnD3umqIOhO0hHUh6NL6BdAX6Ap8k6Bl5+9hi1BCZnaRmU03s+krV+oXghQ2dVOJSD5Ia7FNADPrBxwI9AbaEKwinpC735DufRqbmZ1KUEz8XXefV9fxVCeJpcDf4t7rnWEB8i3A/wAvJbqAu98O3A4wduzYdIuyRfJCzSUbNJJKRHIj5QTHzHoDfyOoM6mr+tcIWjByleBEWmg6JNkf2b4OwMw6E6yz9SLw1xTvAfB4gv2PEyQ4+9bzeiIFTS04IpIPUp0HpwMwFRhEsC7VG8CJwBbgUaAHQcFuu3D/05kMNg2zwudhSfYPDZ8jNTr9CLqWDgeqkhQWvxBuv9zd/+Dum81sEUG31LoEx68Nn1ulFrpIYRo9ujrB+fTT1VRUVNGsWbH3hotIvkm1BedyYDDwNjDR3deZWRWw3t3PheicMFcDPwF2uPtFmQw4RZGh5keZWUnsSCozaweMAzYDkaHdq4E7k1zrEIKE6FlgKTAjZt8U4AJgN+C/ceftFj7PT/M9iBSUTp1a0qdPOxYv3si2bZXMmbOWkSO75DosEWliUk1wvkLQ5fQjd1+X6AB33wz8LBxd9EMzm+ru9zUszNqF9xpMkFDNjYllrplNJhgK/l2C4uGI6wlqh/4WmQPH3RcRFAYnusckggTnJnefErf7z8B5wE/M7Cl3Xxme05JgIkGA+xv0JkUKyJgxXVm8eCMQdFMpwRGRxpZqu/FgoIqgaypW8wTH/iZ8/laqQQGY2UlmNilMLH4Sbj4gss3Mfhdz+C7AZ8TNZRP6DvAlcIuZPWFmvzKzlwhao2ZT+wR+9eLu7xIkTEOAGWZ2h5ndCnxE0N31BvDbht5HpFDEdlOp0FhEciHVFpxmwDp3j112oBxob2YWO6Ta3VeZ2TpgdJqx7UHQKhJrUPgAWEiw8GetwlacsQSFzhOBY4FlwB+B6919bW3n15e732BmM4DLgDMJkr65BN11v3P3bZm4j0ghUKGxiOSa1T3NS8zBZrOBvu7eKmbbZwRFvKPcfWbM9lYEC1Rujz1eajd27FifPn16rsMQaZAZM1YyevQ/ARgwoD3z5+eyFE9EilzCEUGpdlHNBZqHazxFvBk+xy9YeWl407mISJMyfHhnysqCHy8LFmxg/Xo1YIpI40o1wXmRIGmZGLMtMl/M983saTO70cyeIiiudeCfDQ9TRApJWVlpjcLiGTNUhyMijSvVBOd+gvluukc2uPs7BLP0OsHkfz8BjidIhB4Hfp+RSEWkoNSc0Vh1OCLSuFJKcNx9ibuf7u7Xxm3/HTAGuBb4O/A74Gh3Py1+FW8RaRpUaCyFbNGiDVx11TSmTVuc61AkTWmvRRXP3T8FPs3U9USksNVMcNRFJYVj3bqtjBt3P4sWbeSPf3yPuXO/SY8ebXIdlqRI86eLSFbEd1GlMmJTJJd+8IOXWLQomKiyvHwHjz46u44zJB+llOCY2Utmdo2ZjTezFtkKSkQKX+/ebencuSUAGzZs54svNuQ4IpG6PfLILO65p2ZnxIMPzkpytOSzVFtwxhPU2bwIrDOzV83sF2Z2ZLgGlYgIAGZWo5tKMxpLvlu2bBPf/vYLO22fNm0xS5duykFE0hCpJjiXAA8QzATcAjgI+BnwHLDWzN40s1+b2THhYpYi0oTFdlOp0FjymbvzjW88z5o1WwHo27cd++/fK9wHDz+sVpxCk+ooqr+5+9fcvQ/BwpPfBO4FFgFlwH7Aj4H/AGvM7J24NaNEpAnRSCopFLff/hHPPjs/+nrSpGO44ILdoq/VTVV40i4ydve57n6Xu5/n7gOAgcD5wD+ABUApsDfBopYi0gRp0U0pBHPmrOWHP3w5+vqyy/bmsMP6ccopQyktDVYBePPNpaojKzCZHEXVPubRNoPXFZECNWpUFyxcJWbWrDVs21aR24BE4lRUVHHuuc+weXPwvbnrrl343/89CICuXVtzxBH9o8eqm6qwpJXgWGBPM7vMzB43s1XABwQrdJ8KtAImA1cBB2cqWBEpLG3bNmfw4I4AVFY6n322JrcBicT5zW/e5q23lgHQrFkJ9957LK1alUX3n3HG8OjX6qYqLKkOE/+Rmf0bWANMB24CTiTojnqGYMmG/YFO7j7R3X/l7m9kOGYRKSCx3VSqw5F88u67y7nuuupfUddddyB77tmjxjEnnzw0unDsO+8sZ968dY0ZYta4O4sWbaCqqnjnp0q1Bec3wLEE60w9AfyQoM6ms7uf4O6/c/e33b0ys2GKSKEaM0YjqST/bNmyg3POeYaKimA1oQMO6M3//M++Ox3XqVNLjjpqQPT1Qw8VRyvO5Ze/TL9+t3PooQ9QWVmcKyql00VlQDtgODAkfHSr9QwRabKaaqHxyy9/waGHPsDvf/9OrkORBH72s9eiXaZt2pRx993H0KxZ4l+JZ55Z3U1VDAnOsmWb+NOf3gfgtdeW8N57K3IcUXakmuCcBtwKfAyMBL5DOC+OmX1qZn8xszPNrEdtFxGRpqMpDhV3dy688DlefXUxV145Vaup55kXX1zIH/7wbvT1738/niFDOiU9/itfGULz5qUAvP/+l8yZszbrMWbT3Xd/QmVlddfUyy8vymE02ZPqPDiPuful7r4H0BU4CfgDQYHxMOBi4F/AUjObaWa3mdnZmQxYRArLoEEdaN06WNd3+fJyVq7cnOOIsu+//13GggXVQ4r/9a/PchiNxFq3bivnn/9c9PWxxw7koovG1HpOhw4tOOaYgdHXDz44M2vxZZu7c+edM2pse/nlL3IUTXY1ZB6cte7+lLtf4e57A52B44HfEbTwDAO+BdyTkUhFpCCVlpYwalTswpvF300V343xwAMztdhonvje915k8eJgIc0uXVpx550TschcBrWI7aYq5NFU06Yt3qkFatq0JezYUXylsxmZB8fMWhIUG+8bPoYBTlCvU/d3jogUtabUTVVV5TslOAsWbIgORZbcefjhWdx3X3Vr2t/+diQ9e7ap17knnDCYVq2ClsgZM1bx6aeFmajfeefHO20rL9/BO+8sz0E02ZXuPDitwwU2f2lm04B1wBTg58ChQEtgNfA4mslYpMmruehmcSc4b765lCVLdl6Y8f771U2VS0uXbuLii6sX0jz33F059dRh9T6/bdvmHHfcoOjrQiw2Xr9+Gw8/PDv6es89u0e/LsY6nFTnwfmNmb0JrCVYYPOnwDigObAceAj4LrCbu3d391Pd/ZYMxywiBaYpLboZ+4tv1Kgu0a8ffHBWdEiyNK5I0XdkIc1+/dpxyy2Hp3yd+En/Cq3b8f77P2PLlmDG5t1378bll+8d3VeMdTiptuD8iGBBzTKCBTbvI6izGebuu7j72e7+V3f/NMNxikgBi01wZsxYXbTzblRVeY3p/G+6aQK9egVdIF9+ubkof4kUgttu+5Dnn18QfT1p0jF06NAi5escd9wg2rQJZjmeOXNNwdWTxXZPfeMbo5kwoV/09euvLy26pVRSTXDuAs4DBrr7AHc/193vdPfPsxCbiBSJrl1bR3/Rb91awdy563IbUJa89tpili0rB6Bbt1Ycdli/Gn/1339/4Y6+KVSzZ6/hyitfib7+4Q/3rvGLPRWtW5dxwgmDo68LaTTVhx9+yfTpwXw3LVqU8rWvjaRPn3YMGdIRCP5fFludWKrDxL/p7ve4+8L6nmNmZXUfJSLFrikUGsd2T5166jCaNSvhq18dGd322GNziu6v5HxWUVHFOedUL6Q5alQXbryxYcsjxk/6VyjdVLGtN6ecMpTOnVsBcNhh1clesbUwplqD8+0Uj29BsKSDiDRxNQuNC6tpvz4qK6t45JHqAs7IL8J99ukZXXB0/fptPPvs/FyE1yT96lf/5e23g9FBZWUl3HPPsbRs2axB15w4cSDt2jUH4PPP1/H++182OM5s27q1gnvvrS5y/8Y3Rke/jm3NKrZC41S7qP5c34n7wqHj/wEmphyViBSdYi80njZtMStWBJMY9ujRmoMP7gOAmXHWWSOix2nSv8Yxffpybrjhzejr668ft9NCmulo2bIZJ544JPq6ELqpHn98DmvXBgXWAwd2qJHUjB/fN/r1W28tY/PmHY0eX7akmuA4MMnMjq/tIDNrDTwLHA4U5yIXIpKSYu+iip387bTThlFaWv3j9eyzqxOcf/97Hhs3bm/U2Jqa+IU0DzywNz/+8T4Zu36hdVPFdk9deOFulJRUT0/Xs2cbRo7sDMD27ZW88cbSRo8vW1JNcC4EmgEPmdn4RAeYWTtgMsF8OEuBCQ2IT0SKxIgRnaOLGc6bt55Nm4rnl3xFRRWPPlrdPRVbWAwwalTXaAvW1q0VPPmkxmVk009+Mo2ZM2MX0jy2RsLZUEcdNYCOHYNRWAsWbMjrSfLmz1/Hiy8GtTUlJcb55++20zE1u6mKpw4n1SLje4AfEEzk96SZ1Vhb3sw6EEz4dyDBMPLx7l54syGJSMa1aNGM4cOrFzScMaN46nCmTl3EypVbAOjVqw0HHdRnp2Nii4016V/2TJmykFtueS/6+uabJ0RroDKlefNSTj55aPR1PndT3XVX9bpTRx89gD592u10TM1C4+Kpw0k5pXX3PxPMWNwOeMbMdgMwsy7AS8A+wHzgUA0fF5FYxVpoHDt66vTTh9foAoiIrcOZPHkhq1YV/6KjjW3t2q2cf/6z0dfHHz+Ib35zdC1npC+2le6hh2ZTVZV/3VSVlVVMmvRJ9HWyz+LQQ6sT8nfeWV40ratptdm5+43A7wkW2JxsZuMIkps9gc8JWm4WZCpIESkOo0cXXx3Ojh2VPPronOjr+O6piAEDOnDAAb2BoEsrdsSVZMb3vvdidJmMLl1acccdR9drIc10HH54P7p0CYZaL168kTffzL/alcmTF0QXFu3WrRXHHz844XFdu7aO/vFRUVHFa68tabQYs6khq4n/CLgT6Am8CowGZhEkN8XTxiUiGTNmTPGNpHr55UWsXh10T+2yS9toEpNIbLGxJv3LrAcfnFljhNrtt9d/Ic10lJWVcsop+d1N9fe/VxcXn3vuKJo3L0167IQJ1aOpXnqpOOpwGlp1dRHB+lMGfELQLZV/aayI5IX4Lqp8H31SH7HdU2eckbh7KtH+adMWR/+6loZZsmQjl1wyJfr6vPNGccop9V9IM12xo6keeWR2Xi1B8uWX5Tz11Nzo69i5bxIpxkLjpDMemdlL9bxGGcHw8UrggQTNge7uqa9qJiJFp0+fdnTo0IL167exdu1WlizZlLDosVDs2FHJY4/V3T0V0aNHGw4/vB8vvLAQ9+Cv/iuuyNzw5abI3fnGN56PzvPSr187/vjHwxrl3oce2pfu3Vvz5ZebWbasnNdeW8Khh/at+8RGcM89n9YYJj9yZJdajz/00D6UlBhVVc57733J+vXb0lqvK5/U1oIzvp6PcQQtOGNqOUZEBDMrqvlwpkxZWOMX63779arzHHVTZdZf//pBdCFNM7j77mMb7Rdzs2YlnHpq/nVTuXuN7qm6Wm8AOnZsyZ57dgeCRWNffXVx1uJrLLXNWX1Bo0UhIk3G6NFdmTYt+OH58ccrOfbYQTmOKH3xo6fqU9B68slDufjiKWzfXsm7765g9uw1DBvWOZthFq1Zs9Zw5ZVTo69/+MOxjd6CcuaZI/jrXz8Egm6qW245PDrfU668+ebS6DxAbduW1dmyGDFhQl/efTeYm/ell76osbBoIUqa4Lj7PxszEBFpGmq24BTuUPHt2yt5/PHqmTDq+0ukY8eWHHvsQJ54Ijj3/vtncu21B2YlxmJWUVHFuec+w5YtwUKau+3WlV/+8qBGj+Ogg3ahV682LFtWzsqVW3jllUUccUT/Ro8jVuzMxWedNYK2bZvX67wJE/rxu99NB4qjDie3aaaINDk1C40Lt4vqhRcWsH79NgAGDGjPPvv0rPe58d1UxVBs3dj+93/fyvhCmukoLS3h9NNrLt2QSxs3bq+xbEh9uqciDj64D6WlQSvkhx+ujI4OLFRKcESkUe22W/VQ8c8+W8P27ZU5jCZ9sb9Ezjijft1TEccfP5i2bcuAoJvlgw/yf0XqfPLOO8tqLKR5ww3j2GOP7jmLJ3Y01aOPzmbHjtx9Tz/44EzKy4MFM3fdtUu96sIi2rVrXiNRnzq1sGd8SSnBMbMTzazSzB6ux7FPh8cem354IlJs2rVrzsCBHYCgmyFSK1BI4teTqm/3VETr1mWcdFJ1capWGK+/zZt3cM45z1JZGbR6jRu3Cz/6UW5Hou2/f+/oaMA1a7ZG137KhdjuqW9+c3TKEx3WHC7ehBIc4Kzw+bZ6HPsXgtFVX03xHiJS5Aq9m2ry5AVs2BBMZz9oUAf22qtHyteI7aZ64IFZeTnVfz76yU9eZdas6gLau+8+JqMLaaajpMQ444zqeXdyNZrqk09W8dZby4Cg2+6cc3ZN+RrFNOFfqt8VexHMd/NaPY59MTx271SDEpHiFllZGwpzqHhsncWZZ45IazmAI4/sX2Oq/9dfL47p8bPphRcWcOut70df33zzBAYN6pi7gGKceWZ1wvr445/npOs1tvXmxBOH0LVr65SvMW7cLpSVBanBp5+uZsWK8ozF19hSTXD6AOvdfVtdB7r7VmAdsEsacWFmp5nZrWY2zcw2mJmb2b1pXquPmd1lZkvNbJuZLTCzP5hZp7rPBjO7Ory/m9kR9Ti+hZnNCI8v/MkERDKskBfd3LJlR4O6pyLKyko57bTqv/q1wnjt1qzZwvnnPxd9fcIJg1MqoM22ffbpyYAB7QFYv34bkycvaNT7b99eyT33fBp9ne4io61bl7H//tXLjbzySuF2U6Wa4GwH2lo9/lwJj2mbVlSBq4HvAXsAaf9pY2aDgXcJ5vV5G7gZmAdcCrwZroJe2/l7AdcAm1K47f8CuR0nKJLHCrkF57nnFrBpU1DEOXRoJ3bfvVsdZyT31a9W/9X/8MO5LU7Nd9/73ossXRr8GO7atRV33HFU1hbSTIeZ1Uh2Y4vQG8NTT33OqlXBqKe+fds1aKh6bDdVIdfhpJrgzAWaAwfX49hDgRbA/FSDCl0ODAPaA5ekeQ0IaoG6Az9w95Pc/SfufhhBojMcuDHZiWbWErgHeAd4vD43M7PxYew/akDMIkVtyJBO0SG9S5ZsYtmyVP5+yK34taca8kv2oIP6RItTV63awpQpCxscXzF6+OFZNWZ9vuOOo+jRI3sLaaYrtpvqySc/Z+vWika7d+zMxRdcsFuD6pKKpQ4n1U/gaYLC4ZvMLOl3V7jvJoI1qp5OJzB3f9nd53gDJogIW2+OAhYAf47bfS1QDpxTy3v5FTAQOB+ocxU1M2sPTAJedPf6FGKLNEnNmpWw997Vhbm///30HEZTf5s37+Df/65ewDB2eHA6SkqsxjW0dMPOVqwo32khzdgRaPlkzz27M2RIRyCYj+bZZ9P9+z41X3yxIdolZhYkOA2x//69adEiWHl8zpy1LFlSmIvCpprg/BFYDewJvBPWyURXyjOzdmZ2BjCdoGtpHUGikysTwufJ7l4jQXH3jcDrQGtg//gTzewwgm6sn7r7nPj9SdwCdAK+kXbEIk3EFVeMjX795z9/UBA/RJ99dn50jpERIzrXmNMnXbGjqR5/fA5btuxo8DWLhbtz0UWToxPO9e3beAtppsPMarTiNNakf5MmzSDSFHDEEf0ZMKBDg67XsmUzxo2rLp8t1G6qlBIcd18DnAJsBEYADwJrzWy1ma0G1gL3E3T9bAROdfdcVhBG/jSanWR/JHEZFrvRzDoQtMRMI0ha6mRmJwPnAT9098Jt0xNpJCedNISxY4NWnK1bK/jlL9/KcUR1ix3+29DuqYi99urB0KHBeIdNm3bw9NPzGnzNYnH33Z/w1FPVLWZ33TUx71e4jm2R+/e/57J5c3YT1qoq5667ZkRfZ6rwumYdTmH+Sku5k87dpxEMF3+EYBh4CUGrRafw60rgYWAvd38lY5GmJ5LGrk+yP7K9Y9z2W4HOwAX16SIzsx7A7cCz7n5nqkGa2UVmNt3Mpq9cWVgFlyLpMjNuvLG6nO/vf/+YefPW5S6gOpSXb+c//6lOPtIdPRXPzGoUG6ubKrBo0QZ+8IOXoq+/8509cr7GU33stltXRowIFk8tL89+wvriiwtZuHADAJ07t+Skk4Zk5LrFMOFfWlVI7j7P3c8gSGomEEwAeFb4dSd3P9Pd59Z2jXxlZqcC5wA/dvf6fmfeQbBw6TfTuae73+7uY919bLdu6Y/IECk0Rx7Zn0MP7QMEsxpfd90bOY4ouaefnhdd2HHUqC6MGtXw7qmIs88eWeM+kTWumip358ILn49Opjh4cEd+85tDchxV/QTdVLGjqbKbsMbOfXPOObvSokVm1uPaZ5+etG4dXGv+/PUsWJCsnSB/NWj6R3cvd/ep7v5Q+Jjq7vk0K1DkXyRZh2Rk+zoAM+tMMEvzi8Bf63MDMzsXOAG41N2Xph2pSBMU34pz772f8skn+TkvTvzoqUwaPrwze+4ZrKW0bVsljz9e37K/4nTbbR9GR5SZwaRJE+u9InY+iK3Defrp+WzatD0r91m9ekuNFe0zOS9Q8+alHHRQn+jrQuymKvbFNiM/kYYl2R8pxY/U6PQDugKHA1Uxk/s5QX0NwAvhtsvC13uFz/+MPT48B2CXmG0dM/GmRIrJuHG7cOyxAwFwh2uueT3HEe1s48btPP109YiY2NWjMyV+hfGmau7cdVx55SvR11dcMbbGL9pCMHJkl+hcT1u3VtQYeZdJ9977aXTG5H337cno0ZntATjssMKeD6dBbVnhZH6dgDYEw8cTymHR7cvh81FmVhI7kioc/TUO2AxEqhtXA8lqaA4hSIieBZYCkaquN0k+oeE3wuvfH75u2u3OIkn88pcH8cwzQQLx2GNzeOedZeyzT/1XQc62//xnbnROk9GjuzJyZK3zg6blzDNH8OMfvwoEdRVffllO9+75N9dLNlVWVnHeec+yeXPwWe+6axd+8YuDchxVes44Y3h0lu4HH5xVoxsyE9y9xtw32ZjVOb4Ox93zanLFuqTVgmNmp5rZiwSz+64kmGdmfpJH1ocEmFmZmY0I572JCuuAJgMDgO/GnXY9QWJ2T6Rbzd0Xufs3Ez2ASHHATeG2KeE5D9ZyDsDamG1bsvMJiBS2PffswemnVze0Xn11frXixK89lQ39+rXn4IODlorKSufhh5MN/ixeN9/8bnRNrtJS4+67j4lOCFloYr9Pnn12fsbrqt55ZzkzZgQJVOvWzTjrrMx/X+61Vw/atQu6Bhcv3sjnn6/L+D2yKeUEx8z+CjxEUFDciqDlprZHuknUSWY2ycwmAT8JNx8Q2WZmv4s5fBfgM4LamXjfAb4EbjGzJ8zsV2b2EsFsw7OBq9KJT0Qy64YbxlFSEvx1OHnyAqZOzY8m8Q0bttWYsC02Ecu02G6qf/2raa1N9cknq7jqqup1nK++en/23rtnDiNqmKFDO0XrqrZvr6yxflkmxBYXn376cNq3z/zw+WbNSjjkkMKtw0kp+QhHGH2bcAZggqHUAMsJurt2IZj1dzawCjjK3dOt89mDoO7lPODocNugmG2n1eciYSvOWIJ5bfYDrgAGE0xauL+7r04zPhHJoBEjunDuubtGX1911Ws0YCLzjHnqqbls2xbUOeyxR3eGDetcxxnpO+20YZSWBkneG28sZeHCwhu5ko4dOyo577xno/Uke+7Znauu2mn+1YITO5oqk5P+lZdvr1Gnle7CmvVRyOtSpZp8fJNg+YX/cff73H1dZIe7V7n7Mne/G9iboHvqcTNLq93M3a9zd6vlMSDm2AXx2+KutcjdL3D3Xu7e3N37u/tl7r42hXjOD+8xpe6jo+eYuxdWdZxIDl177YGUlQU/ll5/fQnPPdc4U93XJpujp+J169aaI4+snuvlgQeaRrHxr371X959dwUQjN65++5jKCsrzXFUDRf7/TJ58gLWrt2akes+/PBsNm4MRmYNH965xqzDmXbYYbF1OF/kxR8d9ZVqghMZMXRfbdcJa1q+R1Dj8tP0QhORpmbAgA5cdNGY6OurrnqNqqrc/UBdt24rzz+/IPo62wkO1JwTpymMpnrvvRX84hfVs1j/8pfj2G234pgPbODAjuyzT9DNtmNHVcaG/8d2T1144W5ZLfzdfffudOrUEoAVKzYzc+aarN0r01JNcDoCG9x9Q8y27SQYReTu7xB0ZU2I3yciksxVV+1Pq1ZBYen773/Jo4/mrtj2qafmRrtN9t67B4MHd8z6PU86aUi0sPbDD1fy6af5OS9QJmzbVsG55z5DRUUwwPXAA3vzwx+OreOswlJz0r+Gd1PNmrWG114LCrGbNSvh3HNHNfiatSkpsehknFBYq4unmuCsYufh4GuAVmaWaFrPUqB7OoGJSNPUq1dbfvCDvaKvr7nm9egvwMYWv/ZUY2jfvgXHHz8o+rqYW3GuueZ1PvkkKINs3boZ//znMZSWFtf0bLHfNy++uJCVKzc36HqxrTfHHz+Inj2zP5VAzeHixZvgLALaxU1Y92H4fHTsgWZ2CNCSYAFOEZF6+/GP96F9+2B46syZa7j33k8bPYa1a7cyefLC6Otsjp6KFz/pXyHVPdTXG28s4f/+753o69/+9lCGDOmUw4iyo2/f9hx4YG8gGP7fkG6qHTsq+ec/P4m+zsbcN4nETvj3yiuLc9ptnIpUE5z/hs8Hx2x7hKBV5yYzO93MhprZKcDdBAXJkxsepog0JZ07t+LKK/eJvr7uujfYtq2iUWN44ok50ZajffftycCBHRvt3sceOyia4M2du47p05c32r0bQ3n5ds4771kiedvhh/fjkkv2yGlM2RQ7J05DuqmefnoeX34ZtAD17t2WiRMHNji2+hg1qivdurUCguUhIvPv5LtUE5xIMvP1mG2TCGbz7QY8AMwkWE28H0GX1jUNjlJEmpzLLtubrl2DH6oLF26oMWtrY2jM0VPxWrZsxsknD42+LrZuqp/8ZFp00rj27Ztz110To3MgFaPTThtGpA74lVcWsWJFeks2xv4fOP/8UTRr1jjdeWbG+PHVrTiFUoeT0qfj7tOAdgRz3US2VQJHAf9HMKNxBcGSB/cTzDOzcKcLiYjUoV275vz0p/tFX//yl2+xefOORrn36tVbmDKl+of4aac1XvdUxFe/Wj2a6oEHZlJZmZs6pEx78cWF/OlP70df//GPh9GvX/scRpR9vXu3jc5SXVXlPPJI6oXzS5ZsrDHh5IUXNk73VEQh1uGknP6FK4hvSbDtf9x9sLu3cPfu7v41d8/9JBYiUrAuuWR3dtklGKS5fHl5jV+M2fT449XdU/vv34v+/Ts0yn1jHXZYP7p3bw3AsmXlvPrq4kaPIdPWr9/GhRc+F319wgmDOe+87I4CyhcNnfTvn//8JFr7MmFC30YZ0RcrdsK/qVMXF0TCXVzl6iJSVFq1KuPnPz8g+vrXv34742v6JNIYa0/VpVmzkhqFzcXQTXX55S/zxRcbAejcuSW3335UQS3e2BCnnjos2g03bdpili7dVO9zq6qcu+6aEX3dWMXFsYYP70yvXsGIrfXrt/HBB182egypUoIjInntwgt3Y9CgoAVl7dqt/P7379RxRsOsXLm5Ro1BLrqnImIn/XvkkdnROXkK0b//PZd//KP6l/Rf/3pEowxxzhc9erSJ1rG4w8MP178VZ+rURcyduw6ADh1acMopQ2s/IQvMbKfVxfNdRhIcMzvQzP5gZk+Z2aNmdpWZ9crEtUWkaSsrK+WGG8ZFX99887sNnkukNo89NofKyqArYNy4XejTp13W7lWXAw7oTb9+wf2DYesLchZLQ6xevYVvfev56OszzxzOGWfkpmUsl9Kd9C927puvf30krVqVZTSu+ortpiqEQuM6Exwz62Jmd5jZcjPbaGbvm9k5MfvvAKYB3weOA04CbgBmm9kxWYpbRJqQs84awahRXQDYtGkHv/71f+s4I325HD0Vr6TEarTiFOoK49/97hRWrAiS0p492/DnPx+R44hy45RThkYXU33zzaV88cWGOs4IEttHH62eOycX3VMRsS0406YtZseO/G5RrDXBMbOWwFTgQoIZidsAuwOTzOxrZnY58A2CoeMrgHeApeHrNsCDZtY30bVFROqrtLSEX/7yoOjrP//5AxYv3pjx+6xYUc4rrwRN72a57Z6KiJ3078knP6e8fHsOo0ndgw/OrNFacccdR9GlS6scRpQ7Xbu25ogjqhdTrU831b/+9RlbtwZzQO25Z3f23LNH1uKry6BBHejbN2hR3LRpR3SB1HxVVwvOJcCuBBP23UHQSnNH+Pry8PVqYKK793b3/d29L8FEgIsIkpzvZSl2EWlCTjxxSHThwm3bKvnlL9+q44zUPfbYnOhIlYMP7kPv3jsts9foxozpxsiRnQHYvLmCf/97Xo4jqr/ly8v5znemRF9feOFuHH/84BxGlHupdlPFdk/lsvUGgjqcmquL53cdTl0JzikEycyP3P3b7v5nd/82cCXByuL9gavdvcZsxe7+OnApQUvOUZkPW0SaGjPjxhurW3HuvPPjaOFlpuRi7am6mFncCuOF0U3l7nzrW8+zZs1WAPr1a8fNN2vt5ZNOGkpZWfCr9513ljNv3rqkx7733grefz8YrdSyZbMacyPlSiHV4dSV4OwaPv89bvudMV8/R2KR7YOS7BcRSckRR/SPjkSpqKjiuuveyNi1ly3bFJ1rpqTEOPXU3HdPRcR2Uz377HzWrt2aw2jqZ9KkGfznP9WtTXfdNZH27VvkMKL80KlTS446akD0dW1z4sS23px66lA6dWqZzdDqJbYO5/XXlzT6EiqpqCvB6QCsd/cand3h6/Xhy4QpnLtvJViqIfdtvCJSFOJbce6771NmzFiZkWs/+ujs6NpIhx7aJ6+GMA8Z0inaPbdjRxWPPpr6TLiNaeHC9Vx66cvR19/73p4cfnj/Ws5oWuoz6d+WLTu4777q1rpcd09F9OvXPjptw5YtFbz9dv6uk1ZXglMCJPtTYSuA177MbX6XWItIwTnwwF047rigYdgdfv7z1zNy3Yceqk4a8qV7Klb8CuP5qqrKufDC59m4MSiGHjq0E7/5zSE5jiq/nHjiEFq0KAXg/fe/ZM6ctTsd89hjc6KTWg4e3JFDD82f8To163Dyt5tKE/2JSMGJHVH1xBOf8847yxp0vSVLNvLaa9XdU7mYSK0uZ545Irpg48svf8GyZfWfCbcx/fWvH0RrM0pKjEmTJtK6dW7mbclX7du34JhjqlcCj639iohdWPPCC3fLq8VIC2XCPyU4IlJw9tije41Wlquueq1B13vkkeruqQkT+tK9e/50T0X07t02+le8e3rrGWXbnDlr+fGPp0Zf/+hH+3DggbvkMKL8Ffv9Gz+aau7cddHpCkpKLO/W64otNH7jjaVs2dI4i+Cmqj4JTmczeyn+AXQGSLQv/hgRkUy74YZx0b9qX3hhIa+8kn5TeT6sPVUf+dxNVVlZxfnnP8vmzUHR6ahRXbj++gNzHFX+OuGEwbRq1QyAGTNW8emnq6L77rqruvXm2GMHsssuuZtNO5FevdoyfHjw63379krefLNhLajZUp8EpzkwPsGjjGAYeKJ9sceIiGTc8OGdOf/86r9sr7rqNWovCUxs0aINvPHGUgBKS42TTx6SsRgz7dRTh0WHGP/3v8syPky+IX7/++nRz7FZsxLuuedYWrRoluOo8lfbts2jtWRQnWRXVFTVWLMrX4qL48W24uRrHU5dCc4/M/C4OxuBi4hcc80B0V/4b7yxlGeeSX0SvIcfri4uPvzw/nTt2jpj8WValy6tOProAdHXDzyQH604M2asrFHsfc01B+R0xt1CET/pn7vz3HPzWbasHIAePVrXSILySSFM+Fdreu3uFzRWICIiqerfvwMXX7w7t976PgBXX/06xxwzKKWCzHxae6o+zj57ZHR+mfvv/4yrrto/p/Hs2FHJuec+G13pfOzYHvzkJ/vmNKZCceyxg2jTpozy8h3MnLmGjz9eVWPum/POG0VZWWkOI0wuMh8VBK2JmzZtp23b5jmMaGcqMhaRgvazn+0frWX44IMveeSR+hffLliwnv/+N6gfaNasJK+7pyK+8pXq2o1PPlnNxx9nZh6gdN1441vR2XZbtCjln/88Jm9/Keeb1q3LOOGE6qUrbrnlPf7977nR1xdemJ/dUwDdurVmt926AkG32uuvL8lxRDtTgiMiBa1nzzZceule0dc///nrVFRU1evcRx6p7p468sj+dO6c/4tAtm3bnK98pfqXYi6Ljd99d3mNNcFuvPEgdt21a87iKUSx3VR33vkxlZVBHdlBB+0SLeTNVzXrcPKvm0oJjogUvB/9aB86dAiWAZg9ey333PNJvc7Lx7Wn6iN2TaL77/8sreLqhtq6tYJzz322xi/kyy7bu9HjKHQTJw6kffudu3a++c38bb2JqDkfTv4VGivBEZGC17lzK668cmz09XXXvVHnGjnz5q1j+vQVAJSVlXDiifnfPRVx9NED6NgxSOgWLNjAW2813jDdzZt3cO+9n3L44Q/x6aerAWjTpoxJk46htFS/UlLVsmWznb732rVrzmmn5c9aaMkcemif6OST06eviM68nC/03SgiReHSS/emW7egi+mLLzZy++0f1Xr8ww9X1+ocffSAvFjIsL5atGhWYzHQbK8w7u688cYSvvWt5+nZ86+cc84z0SHhAL/73aEMHtwxqzEUs/jWw7PPHkGbNvlVsJtI586t2GOP7kCwRMe0aYtzHFFNSnBEpCi0a9ecn/50v+jrG298i/Ly7UmPz/e1p+oSO+nfQw/NqnfdUSoWL97Ir371X0aMuItx4+7n73//OLrGFASz7H7/+3vy7W/vnvF7NyVHHVXdIgf5O/dNIvk8H44SHBEpGpdcsgd9+gSzvq5YsTk6fDze55+v5b33gu6p5s1L+cpXCqd7KmL8+L7RFc9XrNicsV8uW7dW8MADM5k48RH697+dn/1sGrNn11wMctiwTvzqVwfzxRcXccsth2NW/2H5srPmzUu59dbD6d+/PVdeOTa6cnwhyOd1qZTgiEjRaNmyGddcc0D09W9/+w7r1m3d6bjYuW8mThwQLVAuJKWlJTVG4DRkNJW78/bby7jkkhfo1euvnH32f3j++QVUVVUXL7dr15xvfWsMb7zxVWbOvJCf/GS/vFtCoJB9/eu7smDBRfzf/40vqITxkEP6UFoaxPvBB1+yZs2WHEdUTQmOiBSV888fFa0HWbt2K7///fSdjim0yf2SOfvs6tFUjz02p87C6njLlm3i//7vbXbbbRL77Xcft932IevWVReKmsHhh/fj3nuPZfnyS7j99qM44IDeBfULWLKrffsW7L13MGu1O0ydmj91OEpwRKSolJWVcsMN46Kvb775Xb78sjz6etasNXz4YTA5XosWhdk9FbHvvj0ZNKgDAOvXb+PZZ+fXec62bRU88sgsjj/+Mfr2/Rs//vGr0dFQEYMGdeCGG8Yxf/63mDLlDL72tV1p3VpLC0pi+TpcXAmOiBSds84awejRwYRz5eU7+PWv347uix09deyxg2jXLv9HqyRjZpx1Vt0rjLs77723gu9//0V6976N00//N08/PS86hw0EQ70vuGA3pk49k88//yY///kB9O/fIevvQQpfvk74pwRHRIpOSYnxi18cFH39l798wKJFG4BgUcOIQu6eiogdTfXUU3NrjHL68stybr55Orvv/k/23vse/vSn91mzpmZN0qGH9mHSpIksX34Jd901kUMO6asuKEnJuHG70KxZkE7MmLGqRotpLmktexEpSl/5ymD23bcnb7+9nG3bKvnFL97issv2YsaMVQC0atWM44/Pz5WaU7Hbbt0YPborH3+8iq1bg+6nTp1aMmnSJzz99LyEw8f792/PeeeN4rzzRjFoUMfGD1qKStu2zdlvv17R9aheeWURZ5wxoo6zsk8JjogUJTPjxhsP5sgjHwbgrrs+ZsuW6iLc444blHerH6fr7LNH8vHH0wC48MLnEx7TqlUzTjttGOefvxvjx/dNacV1kbpMmNA3muC8/HJ+JDjqohKRonX44f2i9QGVlc69934a3VcM3VMRZ52V/L2MG7cLf//70Sxffgl3330shx3WT8mNZFw+zoejBEdEilakFSde69bNOPbYgTmIKDsGDuzIEUf0j77u06cdP/vZfsye/Q1ee+1svvGN0bRvX3hz/UjhOOCAXjRvXgoEIxWXLt2U44jURSUiRe6AA3pz/PGD+M9/5kW3HX/84IJY6ycV999/HA88MJPhwztz2GH9tPClNKpWrco44IBe0XlwXnllUY1V73NB/wNEpOj98pcH1XgdOwNwsejatTXf+95eHHnkACU3khOHHVbdTfXSS7mfD0f/C0Sk6O2+e3cuv3xvAPbaqwfHHlv4o6dE8k2+TfiXtwmOmZ1mZrea2TQz22Bmbmb3pnmtPmZ2l5ktNbNtZrbAzP5gZp3qef7V4f3dzI5IsH+cmf3WzN4xs5XhPeab2d/NrHCnSRUpIr///Xhmz/4Gr756Ji1bqndeJNP23bcnrVoF/7fmzVvPF19syGk8eZvgAFcD3wP2AJakexEzGwy8C1wAvA3cDMwDLgXeNLMudZy/F3ANUFvF1KPAFcBW4D7gVmAp8A3gAzM7oJZzRaQRmBlDh3YqutobkXzRokUzxo3bJfo61604+ZzgXA4MA9oDlzTgOn8BugM/cPeT3P0n7n4YQaIzHLgx2Ylm1hK4B3gHeLyWe9wM9HX3g939Mne/0t3HAVcBbYDbGxC/iIhIQcinOpy8TXDc/WV3n+PuXvfRiYWtN0cBC4A/x+2+FigHzjGzNkku8StgIHA+sPN0oNWx/sbdlybY9RtgC7BbXS1FIiIihS5+XaoG/ApvsLxNcDJkQvg82d1rJCjuvhF4HWgN7B9/opkdRtCN9VN3n5Pm/R2ITJ1ameY1RERECsLee/egbdtg5flFizYyb976nMVS7AlOZCzo7CT7I4nLsNiNZtYBmARMA25pwP1PB9oBb7n7ugZcR0REJO+VlZVy8MF9oq9zWYdT7AlOh/A5WQoZ2d4xbvutQGfggnS7yMxsYHidCuCHdRx7kZlNN7PpK1euTOd2IiIieSG+mypXij3BSZmZnQqcA/zY3efVdXySa3QHngW6AZe6+5u1He/ut7v7WHcf261bt3RuKSIikhfiC41zVYdT7AlOpIWmQ5L9ke3rAMysM3Ab8CLw13RuGCY3LxF0j13q7n9J5zoiIiKFaI89utOxY7D22fLl5cyatSYncRR7gjMrfB6WZP/Q8DlSo9MP6AocDlTFTO7nwHnhMS+E2y6Lv5iZ9QJeAXYFvuvuDanfERERKTilpSUcckhsHU5uuqmKfTrPl8Pno8ysJHYklZm1A8YBm4G3ws2rgTuTXOsQgoToWYJJ/GbE7jSzPgQtN0OAi91dc9+IiEiTNGFCP556ai4QFBpfcskejR5DUSQ4ZlYGDAZ2uPvcyHZ3n2tmkwnmwvkuQdFvxPUEk/D9zd3Lw+MXAd9Mco9JBAnOTe4+JW5ff4Jkqj9wobtPysw7ExERKTzxhcZVVU5JiTVqDHmb4JjZScBJ4cue4fMBYaIBsMrdrwy/3gX4DFgIDIi71HeAN4BbzOzw8Lj9CObImU0w23BDvRLe911ggJldl+CYSe6+IAP3EhERyWujR3ejS5dWrF69hVWrtvDJJ6sYPbpxB9HkbYJDsAbVeXHbBoUPCJKZK6lD2IozFrgBmAgcCywD/ghc7+5rMxDrgPB57/CRyCsEMyqLiIgUtZISY/z4Pjz6aDDd3MsvL2r0BCdvi4zd/Tp3t1oeA2KOXRC/Le5ai9z9Anfv5e7N3b1/uGZUvZMbdz8/vMeUBPtqizPyeCWNj0FERKQgTZhQPVw8FxP+5W2CIyIiIoUrtg5n6tTFVFYmXdIxK5TgiIiISMaNHNmFHj1aA7B27VY+/LBxZ+pXgiMiIiIZZ2Y57aZSgiMiIiJZkct1qZTgiIiISFbEtuC8+upiKioarw5HCY6IiIhkxZAhHdlll7YAbNy4nXffXdFo91aCIyIiIllhZjVWF2/MOhwlOCIiIpI1uarDUYIjIiIiWRNbh/Paa4vZvr2yUe6rBEdERESyZsCADgwY0B6AzZsreOed5Y1y33xei0pERESKwNFHD2TGjFVMmNCXXr3aNMo9leCIiIhIVv31r0dgZo16T3VRiYiISFY1dnIDSnBERESkCCnBERERkaKjBEdERESKjhIcERERKTpKcERERKToKMERERGRoqMER0RERIqOEhwREREpOkpwREREpOgowREREZGiowRHREREio4SHBERESk6SnBERESk6CjBERERkaKjBEdERESKjhIcERERKTpKcERERKToKMERERGRomPunusYJIaZrQQWZviyXYFVGb5mMdDnkpg+l8T0uSSmzyUxfS6JZeNzWeXuE+M3KsFpAsxsuruPzXUc+UafS2L6XBLT55KYPpfE9Lkk1pifi7qoREREpOgowREREZGiowSnabg91wHkKX0uielzSUyfS2L6XBLT55JYo30uqsERERGRoqMWHBERESk6SnBERESk6CjBERERkaKjBKdImVkfM7vLzJaa2TYzW2BmfzCzTrmOLZvM7Ddm9qKZLTKzLWa2xszeN7NrzaxLknMONLNnwmO3mNlHZnaZmZU2dvzZZmaHm9njZrY8/L5YambPm9mxCY4t+s/FAt8ys/+a2SYzKzez6WZ2sZkl/PloZseb2Stmtj48579mdl5jx54JZnaamd1qZtPMbIOZuZndm+TYoWb2P2b2Uvj/a7uZrTCzJ81sQh33Oc/M3g4/r/Xh53d8dt5Vw6X4uQwI9yd7PFDLfYr2cwmPb2Fm3w3f46rwfX5mZreYWf9azsvI56Ii4yJkZoOBN4DuwJPATGBfYAIwCxjn7qtzF2H2mNl24D3gU+BLoA2wPzAWWArs7+6LYo4/EXgU2Ao8CKwBTgCGA4+4++mN+gayyMx+C/wIWAw8SzCbaDdgb2CKu/845tgm8bmY2X3AVwm+V54CNgNHAiOBe9z93LjjvwfcCqwm+Fy2A6cBfYDfu/uVjRd9w5nZB8DuwCaC74sRwH3u/vUExz4AnEnwf+s1gu+J4cBXgFLgUne/JcF5vwOuCK//CNAcOAvoDHzf3f+U8TfWQCl+LgOA+cCHwBMJLjfD3R9JcF6xfy7NgFeAcQS/g6YA24B9gEOA9cCB7v5p3HmZ+1zcXY8iewDPAx5+M8RuvyncfluuY8zie2+ZZPuN4Xv/S8y29gS/2LYBY2OvQZAgOnBWrt9Thj6Xb4XvZxLQPMH+sqb2uQAnh+9lHtA1Zntz4N/hvlNitg8gSPhWAwNitncCPg+PPyDX7yvFz2ACMBQwYHz4Hu5Ncuz5wJ4Jth9KkOhtA3rF7TswvObnQKe4z3J1+HkOyNT7ydHnMiDyfyuF6zeFz+X0cP8UoCRu3/Xhvruy+bmoi6rIhK03RwELgD/H7b4WKAfOMbM2jRxao3D3rUl2PRQ+D43ZdhpBC8YD7j497hpXhy8vyXiQjczMWhAkeF8AF7n79vhj3H1HzMsm8bkQJDgQtLxE18YJP5+fhy+/F3P8hUAL4E/uviDm+LXA/4YvL85atFng7i+7+xwPf4vUcewkd38/wfapBH+pNyf4BRUr8nncGH5OkXMWEPx8agFckF702ZPK55KmpvC5DAqfn3b3qrh9T4bP3eK2Z/RzUYJTfCJ94ZPjv6ncfSPwOtCaoNumKTkhfP4oZtth4fNzCY5/laC74sAwQShkRxL8IHkMqDKz48JaikvN7IAExzeVz6Vn+Dwvwb7ItoPNrHn4dW2fy7NxxzQ1kQS5Im57U/rMepvZt83sZ+HzmFqObQqfyyfh8zEJ6tki9TRT4rZn9HNpVt8DpWAMD59nJ9k/h6CFZxjwYqNElANmdiXQFuhAUH9zEEFy8+uYw5J+Vu5eYWbzgVEEf4l8ltWAs2uf8Hkr8D6wW+xOM3sVOM3dV4abmsrnEmm1GZhgX+Svz2bh1zOp/XNZZmblQB8za+3umzMdbL4Ki0UPJ0h8X43Z3gbYBdjk7ssSnDonfB6W9SAbx5HhI8rMXgHOc/cvYrY1lc/laYI/qk4BPjazKQRdmXsT/Dy+lZhehmx8LmrBKT4dwuf1SfZHtnfMfig5dSVBl9xlBP+ZngOOivklDk3ns+oePv+IoH/7YKAdMAaYTFDw93DM8U3lc3k6fP6hmXWObDSzMoIagYjIyMP6fi4dkuwvOmEr3n0EXQfXxXYr0HS+jzYDvyD4xd0pfBwKvExQp/JiXElAk/hcwm6s0wj+Lw0HfkDwc3kCQSL8L3ePbfHL+OeiBEeKkrv3dHcj6IY4heCv8PfNbK/cRpYTkf/nFcBX3P01d9/k7h8T1KEsBg5N0l1VzB4gKMgfDHxqZn8zsz8CHxAkgZG/uuPrBwSwYLqAewhGyTwI/C63EeWGu3/p7te4+3vuvi58vErQUv5fYAjwzdxG2fjMrCXB98UVwHeBXgRJzLHA/7d35tF2VfUd/3wTMwgZGBKSMISgYoEIBaooAiFWBikOKcogCIkDVCm2QrELUVejUtBWrSBEASGRIik4xKmMBUKCIISCWGSKq0koQ0YyETMRfv3jtzf35Lxzzr335b3c9+7bn7XO2vfu6ey9zz7n/M7ev/3bewNzwmrNbiMJOO1Hva/I6L+q+4vSesxsiZnNwh82uwI3ZIL7SlutCu5jWeVYgDCVckf4e1hw+0S7mNkWXDfrImAZMDkc83Fl2bUh6tLgNtouZV+gbUMQbm7EV8rcAnysQPG0T/SjMsLoxA/C3wmZoL7SLhfh/eOLZna1mS02szVmdhs+sjMAuDwTv8vbJQk47cczwS2bp4yriMp0dNoSM1uE2+8YL2lE8C5tq2DDYR981KNICbU3Eeu5qiQ8Tiu8MRe/3dsFM9tsZt8wswPNbLCZ7WRmk/BViPsCy81sQYhe1S5jcJtLz7e7/k2YwpuJ2ya5CTg9N9UAgJmtA14AhoT2ydMXnkVxSvz1Kao+1C5RkfjefICZPY4/d/ZWMMDaHe2SBJz2I3am4/Ka65KG4sPJfwJ+u70L1gPYPbhbgntPcN9XEHcCvtrsATPb2N0F62buxnVvDihYzQA1peP4Iu8r7VLFafiy55kZv6p2OSEXpy0JK8p+jH+Z3wCcGUbCyujrbRZXq+Y/BvpCu8RVlvml4FF3a2j4mzVb0bXt0oyRn3T0joM+augP/7IeXuDfj5qhv99k/IfhX1htbdAu1OkXoT7n5/yPw3VMVsa262PtMqzA7+BQ/5eB3TP++9Bmhv5y9Z5IteG2QbhituFTL/0ayLNXGrRrsl0OLWoLfGXZhpD23X2wXaZRM/Q3KBd2WQh7uDvbJW3V0IYUbNXwFPBOXHv9Wfxma7utGiR9Dr9x7sdHI1YAo/AVDW8CFgPvtYxpcEmTcHPgG3Cl05dx0/N/FvxPsTa4SSTtifeJvfARncfwF/YkagLLTzPxJ9E32uUhYD3wBK5zsz9wYvD7gLkRu2z8zwJX0D5bNUzC+wC4Qv7x+GjD3OC3PNZJ0nTcmvFyai+vPLPNbHbuHN8CLmBr0/un4jpxPXVLgkk03i6z8emTB/A6gq9QjPZavmxmlxSco93bZQ98pmBPfMr3dvy+OgLX91uPP48fzJ2j69ql1VJgOrrnwF9k04GX8IfwIuA7ZKTidjvwqZYr8VUwy3E9kdXAPGAqsEtJuiOAW/FRjPXA/wDnA/1bXacubp+RuO2JRaFPLAdmAYf11XbBl87/N66ftDE8rK8C9qxI8wHgPlwgWhf61+RW16WT9Z+KCyplx8JM3Nl14hq+VLzoPFNCO60L7XYf8P5W17+L2uWTwK/xl/groR89hwvAR9U5T9u2S4g/El9d9xT+sRTfRdOB/bq7XdIITiKRSCQSibYjKRknEolEIpFoO5KAk0gkEolEou1IAk4ikUgkEom2Iwk4iUQikUgk2o4k4CQSiUQikWg7koCTSCQSiUSi7UgCTiKRSCQSibYjCTiJRBcjycIxrtVlaRRJx0m6W9IqSa+F8k9pdbl6OpImhrZa2OqyNIuk/SS9Kum++rETrULS3pI2S5rX6rL0NpKAk+gVSJqUERzuanV52glJRwG34ablh+D7MC3BrRfXSzsuc12yx2ZJSyTdJelTYRfyri731HDs1NV5h/ynhPwP7o78ewCXAv2Br+UDJM0uuKabJC2T9LSkWyRdIGn09i9238LMFgE3Am+X9JFWl6c3kSwZJ3oFkmZR2wPlNWCsmb3QuhKVIyneVPuY2cJWlqURJP0Y30/pFmCKmdUVbDJpx1HbhXwltZ2Bd6C2WzD4/mDHm9mftrnAtXN3azuHPYaOBj5uZjNK4hyG76r9gpm9t6vL0F1Ieie+T9BDZvaugvDZeN034NudgH8QD6O2SzT4dig/AC40s3XdWea+jKR9gaeB+cB4q97BPRFIIziJHo+kEfgGiOuAm/B+e2ZLC9VejA/uvzcj3BRwkpmNDscwYHd8XyeAI/F9bNoKM3vYzPbrTcJN4ILgXlMn3s2Za7qbmQ3GN7A9Cd888Q3Ap4EHJA3rvuL2bcxsPjAH3+z2r1pcnF5DEnASvYGPAgOAXwJXB7/JrStO2/HG4L7SlZma2Utmdh4QpxSTUNoDkLQrPhq6CfhZs+nNbKmZzTKzE4BP4JssHgRc25XlTHRgZnA/2dJS9CKSgJPoDURh5kfAXHyn3v3C9EAhQXfCJM0I/ydLekjSWklrJN0r6diqk0o6QNLNkpZKWh90D74iaXA+/2aQNETSxZLmSVotaYOk+ZKukLRXs/ll8h0U9CIeCvmul/SMpG8X6UpE3QpgXPC6N6NvMbuz5SjgzuCOlrRLSdlPknR70PHYKOl5ST+SdGhB3BmZ6SmABTldkRmZuIMknSzpBkmPS1oe2ntRyP8vCvKfEvI/OnhNz+W/MBO3rpKxpPdI+pmkxUGPZbGkWZL+siLN64rqksZKuja0yUZJCyR9cxtGTM4ABgJ3mdmqTuYBgJlNB74V/p4s6aCieNvS5zP37jpJL4d79/0hbGFop4m5NK/fn5L6STpP0sNyJXpTTq9K0gck/SJzjZZK+pWk4+uUbWDIe24o28bQt66XtH9Fug9JulWup7Y5pH1G0kxJp5Yk+yk+PX+ipN2qypUItHr79XSko+rAp08MWA4MCH5fD35XVaSbGuLMwHUEDNcXWB1+G7AF+HBJ+mNwJdsYdzWwMfx+ELgs5l+QNqYZVxC2P7AwE2czPnIS/78MHNGJdhoJPJrJZwOwJpfvu3JpFodjSyZO9PtZg+cdlznHxJI4n8/EGZkL6wf8MBP+Kq7Lk71Gn8mluTyUMcZZlin3YuDyTNz3Z+K9FuqYva6bgTNz+Z8a8tmUufbZ/Odl4k4McRaW1P2S3PlXBjf6XVaSLoZ/CFgRfq8J5Y1h8wj3RJN95dch/Rcq4swu698FcXejdm90qM+29Hl8VCjbF7Lt9/eZfCfm0k0N/j8Efl7Qtw4O8QbgCryWOVbn/n+jpGxjgN/lype959bj07b5dP+cy39Nrk8urmjrP4Q4pzZ73fvi0fICpCMdVQfwL+GGnpbxOzD4rQAGlqSLD7iV4eHxaWCHELYPcF8IfxF4Qy7tCFygMuAh4G3BfwBwOrA286CcUXDuQgEHGI4r5Bqu0HsQ0D+EvQkfoTL8JbpTk+10W+ZlcXIm37cDv8/kO6IgbeFLosHzjsvUtzA9PkVlwNqCsIuovfy/BAwN/nuENoovjgmNtnMuzkRcIDoqXv/gPxb4t8yLaGxB2tkhfEqd/AsFHOC0TBm/G9se2BW4IhP2sYq6rQTuzvTBQfi00IYQfm6T10uhjxhwXEW8WPcO/bsk/gMh/v1d1eeBj2fa4VJgePDfDf9o2YTr5VUJOGtDW32G2v2/GzAs/I59YD5+3+wY/IeGNFFg+Wgu/wHAwyHsv4DDqX2Ajcnkuw54c+5+iR8Ul5K5H/GPlA8D11W0c/wYuLLZe7UvHi0vQDrSUXbgS1hfDDf0kbmw+NIuG4GJDzgDzigI353aV+eEXNhXgv+S/EM3hJ+SyXtGQXiZgBO/5m+qqHMUVC5sop2Oypzz+ILwUdReal8tCF9Y9JJo8NzjMueemAsbg7/YY/j3cuFDqH0tF33598enJA2Y02g7N1n+60Ie/1QQNptOCji4IDE/hM0sSXtTCF8A9Cup2xPAoIK0sV3vabK++2byHl0RL9a9Q/8uiX91iP9CV/T50H5RMLqmJN1/VvS9qZmwcyra4jVgKbBXSZwopD6R8/9U7JeUjKIB3ycnjFB7djzVyf56QUg/rzPp+9qRdHASPZlj8ZfkIuA3ubAfBXdynTyew18kW2FmL+JfYABvywWfFNxrrEBHwcxuAf63znmLiGX9VkWcWNZK/aAc0TbGI2Z2Rz7QzJbgD1vwB2x3EfVMFktagwun54WwR4GLc/GPxZcdb8JH6rbCfClstNFyVJEeURfwq+Ae0cX5Hgy8Jfy+pCTOV4I7DijTJ/u2mW0s8P95cPN9tx5jMr+XN5m2ipXBzetYdbbPH0pNN6xD3wh8o4FyrQCuLwk7Cxekbjaz/yuJ8xP8Q2i8pGzbxXpdbmabS9LGZ1S2XmuCO1zSDpUlLyZeszGVsRKAL/FLJHoqU4I708LnS4aZuB7MCZJGmtmykjweKUgbiXZ0do4ekgYBB4S/91eU7X58iL0hgiLlnuHvrTkl2SwDg9uMsnFUxL23Is49wBeAt0ra0brHZsnOJf7X4VMpm3L+sdyPm9lKipmDD+n3D/FvbbZQQbH5b4ET8GW2w0N+WXZvNt86xLotM7M/FEUws2ckvYBPxx2K26XJU2a9tkPfbZARwX3FzF5tMm1TbGOfPyS4i83sjyXpfovr8wyoKMYjFfV8d3AnSzq5Io+Y/17AS3KjlVEgvVrSVcXJXu9j2Xo9hI+mjgEeDGnvMrMFFefPEu+TEZWxEkAScBI9FEnDcQVLKB6BeU7SXGACrhdzeUlWaytOsyG42QfkztRWF75UkfbFirAisl9cjayAaObrbmRwqwwfPh9c4Q/H7hBw3mNmswEkjQLeh3+5fwJ/sOeXEdctt5ltkLQcn2YbWRavDEkH4MLdqIz3WmpKnQPxa75js3nXoZFrAn5d9qC8bmX9N/bdZp/h0UhfXtjcVqKg9XLGb1v6fHyBl96DZrZJ0gqgamSv7MMHauUbytZGKeuVbxdqQtmuDaSLZhgws5WSzsQVmw8imL2QtBhfbXi9mVVtnRGv+0BJ/czstQbO32dJU1SJnsqpwODw+/fqaDbecOEGeodNnOy9trOZqc4xrhPnGFw/yvbBzJaY2Q+pWZ++Mr80N0N3lns6Ltw8igtcQ81smJmNMrPRuGIpuODXHfSYaxKIAshwSV1Z5wODm5263R59vh5VFn9j+c5voGyKwnuuXoc0kjZ7UjO7FV/ocA6ueP0iLqSdBcyWVGV8MQqSq5JwU58k4CR6Ks0ILYdIOrB+tIZYiSseQvU8d7Nz4Esyv8c2mbYe8Su1Kt84VWB0re5FJWZ2P/61OhBfWZKlbrklDab2lVz1NV6Udiw+lbAF+KCZ3WFmeWOGozqm7BJiWetNNcbr0lTdtoF47fvT2KhFXYJNlmhPaG4maFv6fF1dE0kDaWwEpYxYvmbLtoKa4NSpe9nMVpvZtWZ2qpntgZvDiCOcZ0s6sSRpFHC22z3cm0kCTqLHId93Jc6PH4zf1GVHVBLtklGcoND5ZPh7ZEXUo5rMdwG1B+oJnShaFY8G9+iKr/JoVO7ZbtK/qSLa/Zgo6ZiMfyz3vpL2KEk7gdo0zKO5sKjTUVbn14UHK9+37JgSf6gJup0Z6Yhl3VElBiklvRWfnsrG727mU6vXPl2U5+dxAdbITCdvY59/LLijJb25JM47qda/qceDwX1fM4mCUvEj4W+X3Mtm9qSZnUNND+vokqjjgvt0V5y33UkCTqInclZwHzezx81sVdkB/DjEPUNSXnG0s8wK7tlBF2grJH2YJhSMM8wI7oUVL3Tk7NREvj8J7nhqekvZ/EbhdoDAh8S3K2b2DL7NBritm8id+KqSAfhLcivC9fxy+DvXzBbnosQVKTuVnDpuEjmqyPJrGPU7vaLo9fKv4ndAVI7Nrx6LTA3uQmor+roVM1uDLz0Ht5G0TUiaAvxD+PsfZvZELsqM4Dbb5x/DV08CXFiS7B+bKmxHbsCFsv0l/U1VREl5Ze4ZwZ0i6c8bTRtGnaqIe8ENKgl/R3CrFkAkAknASfQowghE3LOokX1yfoWvpBgNVJpVb4Lv4lNVo4DbJI0PZXuDpNNwvY5Vncj367iOwgh8c8JTJL2ugCg3yX8O/jU/qdFMzWwuvvEhwPWSPhKFPflWBHfio11LKFfG7m7+NbhHSzoSIIwkXRr8/07SFyUNAQgvw5n4KFo0Apgnrk46q0S4fQpX4hVws6S3hLwHSDoJN0BYtf9WzP+kIkG3irByL5b5Q5K+K98DCkm7SroC32MN4EvbWZ8ivhzfURmrBEkjJE2SdCt+LwgX6M4piN6pPh/aI5oI+LSkrylsTSFpZNBTOR7o9O70ZvYktWnTaZIukxRH/ZA0VNJxkm6k9iEVuQ4fbRkM3CPpbGW2zpA0WtIZku7DLS5HPiPpDkmnZ5edS9pJ0sW4XSWADuYewrMxTgXO6Uyd+xxdbVgnHenYlgN4DzUDXeMbTHN7iH9zxm8qdQyV4V9hBkwtCDuemrVYwwWa+P9+als1XF2QttQAHW4b5clMnFfx+fQ/ZfwMmNxku43Ev3pj+vV03Krh8JK0C+kGQ38FcX8T4t2R8etPx60aXqZmjn8LJdZ62drS7Xr8i38h8M1MnL+mZjnWQptEA4+LgI9RYKgvpN0vE3czviJqIRlrvTS3VcOWULdseept1dChD+XbvRPXbEKm/iqJMzvTrnGLiqVsfU8YvhprGhkr0V3V53HB6fqSvvEabmNpUQg7PJd2Kg0YKgz9b1quHKvx+z27pca9BWl3w58F2eu7gq23oTAyRiSBz+XCXmHrrUkKnykh7ZHUDEMWXrd0bH2kEZxETyPq0jxrJfZDCvhpcD/Y5NROKeYG896OT/+swIeMFwD/BLyX2tLPVU3m+0fcxse5uN2albhdlldx68zXACfiirnN5LsMNxd/Ia4fsBnXi5gPfAcXFh8szWD7EA22HSfpHeDG/MxsMm6s8E68PYfgy4NnAoeZ2bSizMw3ejwbn955FVfo3ZuMjRAzm4XrH92FL7kegL8Uv4lfh+cpwcyexo203Y6/9EaH/PcsS1OQx5fw/vIL/KU+BO9PvwSOMbMvNJpXV2Fmc/B+MZaarlsZg/GRzFH4VN064Fn8vrgAtwB8rpmVjqR0ts+bv9U/iZsZmIcLm8KFrxPN7ErcUCR0bkQ19r9zceHhRrxvDAr1fg6/TudRM6aZTbsU15U5A7fPtIya4vbT+BTYKfgoVuQmvM/ejI8wbqbW33+JK8OXTZedFtzpoW0SdVBqp0SieYINniOBj5vZjBYXJ5FoCkkX4tOGV5nZefXi90SC8vEf8VGkodbRkGTbEIwLPo+vGnuTlVteTmRIIziJRJNIOpyabsjdLS5OItEZvodPO02JukG9kKhkPKedhZvAmfgo2nVJuGmcJOAkEgVIOkfSxZLenFHYHSLpLODXIdot6WGT6I2YK3h/FbfgfH6Li1OKpOlBaX7XjN8+kqZRU2qu2ueq1yOpH3ARrg/11RYXp1eRtmpIJIoZC3wRt+GyRdJqXAchfhT8DvhsS0qWSHQN1+JTHlUryVrNsYQ96SStw0dNswYKLzGz2wvStRO74/pofzDfJDjRIEkHJ5EoQNLb8FU6R+NKpbvgCpZP4gqW3zez9eU5JBKJbUXSR3HbTofgUzQ74Mq8DwLTzOyeFhYv0cNJAk4ikUgkEom2I+ngJBKJRCKRaDuSgJNIJBKJRKLtSAJOIpFIJBKJtiMJOIlEIpFIJNqOJOAkEolEIpFoO/4fcpbUQ5zJVH4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAI4CAYAAABndZP2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACUGklEQVR4nOzdd5hU5dnH8e9Nlw4CUgVFUayoKALuig1bJEbNqyb2HkvsJdFYkpjEbmyxizUaY1TUaLCANBEQxAIKgiBNeu/L3u8fz5nd2XFmd2fZ3dmZ/X2ua66zc85zzrnnsOze+1Rzd0RERERySZ1MByAiIiJS2ZTgiIiISM5RgiMiIiI5RwmOiIiI5BwlOCIiIpJzlOCIiIhIzlGCIyJVxsyGm5mb2VmZjkUqxszOiv4Nh2c6FpF0KMERqUJmNjj65ZD4Wm1mX5vZI2bWswruO8DMbjWz4yv72tH1u0XXv6Iqrp8p0WdK9u+V7HV/puOVymdmx0ffBwMyHYtsnXqZDkCkltgMLIu+NqANsFv0OtfMTnP3VyvxfgOAW4BngTcq8box3aLrzwbuL6XcD8C3wMoqiKEqFQKLyyizqjoCqQFWEv4Nf8h0INXkeODM6OvhmQtDtpYSHJHqMcbdB8TemFl94DDgH4Rk4RkzG+7uZf1SzSrufkamY6igOe7eLdNB1ATu/jrweqbjEEmXmqhEMsDdN7v7e8Cvo11NgBMzGJKISE5RgiOSWZ8Aa6Kvd0tWwMy2M7N7zOwbM1tnZivNbJyZXW1mDRPKdjMzJzQfAZyZpO9It7jyPczsZjP7yMy+N7MNZrbCzMZG198mSTyzgGHR265Jrn9WXNlSOxmbWfOov8NkM1sTvb4ws9vMrEWKc2L9ZAZH7880s0+jfk2rzGyYmR2R7NyqYmZHmllh9BqYoszvorhXJvwblOjEG32esdFnWWlmH5rZUeWI4Tgze9PMfjSzTWa2yMzeMrMjU5RPvO+vzexjM1sa7T8+WbmEa8yKjg0wsw5m9qiZzTGz9WY21cyuNLM6ceV/aWYjo++xVWb2jpntUcbnamtmfzWzL6Pvj7Vm9pWZ3W5mrVOcEx9XazO7N/r+3mhm88zsCTPrkHDOgOj/Tqx56pbE7+3S4pQayN310kuvKnoBgwEHhqc4boQEx4GHkxw/AFgaHXdCv4/1ce8/B9rFle8C/Bh3zfXR+/hXl7jyE+KutT66V2HcvvFAs4SYxhP6EzmwJcn1T44rOzwqd1aSz7YTMCvuXmujV+z9bGDnJOfdGh0fDDwZfV1A6CsSO3cLcGIF/r1i155VgXMfjM6dB7ROOLYPsCnZswDOin2PAPfFxb884d/imhT3rQ+8EFfOE56FA3ckOS/+vg/E3XdZtD0+sVySa8T+/c4GFsTduyDu3g9GZf8W92+1Ku748mT/ztE5B1Hy+38jJb//fwB2KSWu0+K+XgtsiDv3e6BV3Dn9CN+/seuvIeF7O9M/T/RK75XxAPTSK5dflJ3g9I/7gXt1wrFWwPzo2BfA/tH+usBJFCcZ7ye57q3RscFlxPcwcC7QNW5fQ+A4QsfSVInXAMqRCJAiwQEaAJPjfkkdQUj2jNA3aXZ07CugYYrPtjz6ZXQR0Dg6tgPwcXR8PlAvzX+v2LVL/Vwpzt0GmBqd/6+4/Y2Ar6P9ryU57yxKJiV/A1pExzpQnLwUAgclOT+WFE0Hfgk0ifY3A35DcTJxaor7ro6ufTPQMjrWnChxpnwJzgpgDLBXtL8xcFNc3L8nJHiXx8W3B/BN4vOKu3bX6N/YgUcICXGd6LUH8L/o2NdA3RRxLQcmAX2j/fWAQXHXvbOU/7O3VvfPC70q95XxAPTSK5dfpEhwCH91H0n4K9KjH/6dE8r8Ie6HdPsk1x5IcXJ0aMKxWylHglNG7DsQRn+tJUog4o4NYOsSnNPjPvceSc7bneIaj3NSfDYHfp3k3I6Ev/QdyE/zM8eunaxmKvG1e5Lz942L+/Ro3/3R+wXAtknOOSvu8zyR5LgBH0XHP0g4tjMhgVhEXM1cQplTonO/KuW+fynlmcTKDU9ybFZ0bBlRcpRw/MO4e9yc5HhedGwD0CDhWCyx+2uKuOKT5JNSxPVjimd+dXR8Zin/Z2+t6P8dvWrGS31wRKpHv6hvxI9mtpDwA/09wgiqQuBCd5+bcM5J0fZJd/8x8YLuPpTQhwfg/yo7YHf/nvDXcWOgVyVfPvbZ3nT3r5Lc+2vg39HbVJ/tB+ClJOfOB8ZFb0vt31GKOsB2ZbzqJ7n3RIr7Pz1kZucAv43en+PuS8u471+SXNOBv0ZvD03od3IGIQF6xd3npLjmvwkJ3+6J/U4iW4B7y4irLI+6+4ok+z+ItptS3GM04f9CQ0INDQBm1phQG1WYKjZ330Tx90iqPlePp3jmb0TbHcysSYpzJctpmLhI9ahP+KWYaBlwpLtPiN9pZg0o/uU8rJTrfgT0JdQcVEjUIfccQn+fDoSmlkQdK3r9FGLxlvXZTiX1Z5sQ/fJPZl60bVWB2ABme8WHid8BHEPoP/JUtO8f7v5uGef9ECWVyYwiJCJ1CcnmR9H+ftH2TDP7ZSnXjiVjXQg1SfG+c/clZcRWli9T7F8UbWe5+5rEg+5eaGZLgM6U/Lfaj1BD48CXZpbqvrHv1S4pjo9PsX9e3NctCbWUkmOU4IhUj489mgfHwsinXQl9FE4CnjKzAe6+PK58a4pHOcb/ME4Uq/VpW5GgzOwB4LK4XbEJCTfHxVGfMIy9MsXiLc9n29bMLEkys7qUczdE25/UslS16Jf2eYT+JRCaS64px6kpn4W7rzez5YQJIuP/rWM1Ms2iV1kaJ9lXGXMvJSZNMVvKOB5fJv7fKva5jOR/GCRK9rkgxfeIu2+IS5qq/XtEqoeaqESqmbtvdPfJhKaX/wF7AY+VckqjqojDzI4mJDdbCH1PdiJ06N3W3du7e3vg01jxqoiBKvpsNcDZcV93ALpX0X1iP8OvdHcrx2t4kmtsSbIv02Kfa2U5P9eATAYrNZMSHJEMiWokfkv4BfNLMzs47vAyQv8DgO1LuUznaFuRv8JjTRpPuvtt7j4jSS1Jef56rohYvOX5bEtLaYqqccwsD7g2evsVoX/JC1GzY2lSNgOaWSOKm3Di/60XRtvSnmM2in2u5qnmQxIpixIckQxy92nAK9Hb2+P2byL8cgQ4pJRLHBptJybsjyVHpdW8xBKISckOmllX4jp+VuD6pYnFW5HPVmOZWXPgOcLP1qcJn2ERoZbuz2Wc3jV+AsAEBxH63zhh7qOYWCfzMicCzDITCPPlGNX/2bb2e1tqCCU4Ipl3d7TtbyVXMI6NEDkr2eiXaMbcvtHbfyUcji0E2bKU+8YWwNwzxfG/kPqHfOz6Ff3rOvbZjjazfRIPmtnuFI+0SvxsNdkDhJFx3wNXeFhb7Pzo2NVmll/G+b9L3GGhs8gN0dsP3X1Z3OHnCElPTzO7sLQLm1lFO1xXO3dfDbwWvf2jmaXsX2Rm9cysaSXevjz/dyQLKMERyTB3n0TxcNqb4g49ROicuQ3wnpn1BjCzumZ2IvByVO4Dd/+Ikr6OtgeZ2c4pbv1+tL3QzM6JNaGY2fZm9ixhBNPyFOdOJ3REbhHFkq5XCJMXArxhZodHv8gxs8OA/xI6f34NvFiB61c7MzuBMM1/IWEOnNUA7j6EMJqqDvBsVMuTzCrgAjP7S6xZxszaE1aEP4yQyNwWf4K7TyFM9AfwSLSkQaxmDjNrZmYDzewFoDJXq68ONxCaansAY8zsKAuL1GLBzmZ2FaEzd+9KvG/s/85RKYbVS5ZQgiNSM9wZbQ8zswMBolFVxxOSjL2A8Wa2ijCF/L8JfTK+oHjBznjDgRmEUVDfWliXaFb0iv0CHAyMJYymfApYF43UmU2YX+UWipOQEtx9LfDP6O2/o7WFYtc/Kdk5CedvIiwuOpvQf+R9YI2ZrSUke9sT5rk5wd03lnW9KtAlbt6iVK//xApHicjj0ds73X10wvWuAGYSanceSHHPSYRJAX8HLDWzZYTZmE+Pjl/n7qOSnHcdYVX6OoSkYI6FNaxWEGrp/kf4Hqlb/o+fee4+i9A8NZ8wZcK7wNpoWPkGYBpwD6EDd2X20Xqd4sRqrpktiH1vV+I9pBoowRGpAdz9fYr7wvwhbv84wiKc9xF+oNcn9E2YQOjI2sfdF5HA3TcT/up/njD8uBVh6vuuRNNDREnG4YSlAWYSah4KCMnGce7+pzLCvogwAd03hI60seuXq7nA3b8D9gb+SHF/I6Kv/0SY9n9aea5VBcoz0V/8hHtPA9sS+sfcQoJoDpgzCM/4zKi25yfc/UrCCKzPCP9OawhzBR3t7nenOGeLu19M6KfzAiFpbEgYofYDMAS4lOImv6zh7uMJUypcT1gKYg2h6Wgd4f/AA8DB7v5xJd5zCaFv2H8IHbrbUvy9LVnEsmhwgohIzrGw0vozxM2VJCJbTzU4IiIiknOU4IiIiEjOUYIjIiIiOUcJjoiIiOQcdTLOAUcddZS/9957mQ5DREQkE5JOSKoanBywZMmSTIcgIiJSoyjBERERkZyjBEdERERyjhIcERERyTlKcERERCTnKMERERGRnKMER0RERHKOEhwRERHJOUpwREREJOcowREREZGcowRHREREco4SHBEREck5SnBEREQk5yjBERERkZyjBEdERERyjhIcERERyTlKcERERCTnKMERERGRnKMER0RERHKOEhwpMmXKEh5+eBInn/wW3367LNPhiIiIVFi9TAcgNceNN47ijTe+A+CQQ7qwyy6tMxyRiIhIxagGR4rk53cu+nrkyHkZjERERGTrKMGRInl5xQnOxx/Pwd0zGI2IiEjFKcGRIr16taNp0/oAzJu3hlmzVmY4IhERkYpRgiNF6tWrQ79+nYreq5lKRESylRIcKSG+H86IEXMzGImIiEjFKcGREvLy4mtwlOCIiEh2UoIjJRxwQAcaNKgLwLRpy/nxx7UZjkhERCR9SnCkhEaN6tGnT4ei96NGqRZHRESyjxIc+Yn4Zir1wxERkWykBEd+QhP+iYhItlOCIz/Rt29H6tQxACZPXsSKFRsyHJGIiEh6lODITzRv3pB99mkHgDuMHq1aHBERyS5KcCSp+GUb1EwlIiLZRgmOJKUJ/0REJJspwZGkDjqoeCTVhAk/sm7d5gxGIyIikh4lOJJU27aN6dmzNQCbNxfy6acLMhyRiIhI+SnBkZTy87sUfa1lG0REJJsowZGUNOGfiIhkKyU4klJ8R+NPPpnP5s1bMhiNiIhI+SnBkZS6dGlO167NAVi3roCJExdlOCIREZHyUYIjpSo5XHxOBiMREREpvxqb4JjZSWb2oJmNNLNVZuZm9kIFr9XZzJ42s/lmttHMZpnZ/WbWqpzn3xTd383s8CTH+5vZnWY23swWR/f43syeNLOdUlxzcNw1k712rchnrWxal0pERLJRvUwHUIqbgL2BNcBcoEK/8M2sOzAGaAe8CXwDHABcDhxlZv3dfWkp5+8L3BzF0TRFsdeAttF9XgQKgL7AucApZnaEu3+S4ty/AyuS7F9S+ierHvEzGo8aNY/CQi9ap0pERKSmqskJzpWExOY74GBgWAWv8wghufmtuz8Y22lm90b3uB24KNmJZtYIeB4YD8wATk9xj/uA5919fsL5v4+u/ziwZ4pz73f3WeX9MNWtR49WtGvXmEWL1rF8+Qa+/noJe+7ZNtNhiYiIlKrGNlG5+zB3n+7uXtFrRLU3A4FZwMMJh28B1gKnm1mTFJf4K7ADcBZQWEqsdyQmN5E7gPXAHma2bVrB1xBmpuHiIiKSdWpsglNJDom2Q929RILi7quB0UBj4MDEE83sUEIz1u/cfXoF7++E5iqAVGOsjzaz683sGjM73syaV/BeVSZ+wj8lOCIikg1qchNVZdgl2k5LcXw6oYanB/BhbKeZtQAGAyOBB7bi/r8EmgFj3X1FijKPJLxfbWa/c/fEGqeMia/BGTlyLu6OmfrhiIhIzZXrNTgtou3KFMdj+1sm7H8QaA2cXdEmMjPbIbpOAXBVkiIjgJOBrsA2QHfgmujYQ2Z2QRnXv8DMJpjZhMWLF1ckxHLba6+2NG/eAIAFC9YyY8aKKr2fiIjI1sr1BCdtZnYioTPxde4+s4LXaAe8SxhZdXmyEVTu/rS7/8vdf3D3De4+093vAX4VFbndzOqmuoe7P+7uvd29d9u2Vdvpt27dOiVWF9e6VCIiUtPleoITq6FpkeJ4bP8KADNrDTxKaK76R0VuGCU3HxGaxy5398QmqFK5+9vAPKANsFtFYqgK8cPF1Q9HRERqulxPcL6Ntj1SHN852sb66GxPSCwOAwrjJ94DzozKvB/tuyLxYmbWARhOSEwucfeK9t+JtTmlGt1V7TThn4iIZJNc72QcmztnoJnViR9JZWbNgP7AOmBstHsp8FSKa+UTEqJ3gfnAV/EHzawzoeZmJ+Aid3+8IgFHHZx3JYzA+r4i16gKvXu3p1GjemzYUMCMGSuYN281nTo1y3RYIiIiSeVEgmNm9QmddDe7+4zYfnefYWZDCSOlLiF0+o25jVBD8pi7r43KzwHOS3GPwYQE5153/yDhWFdCMtUVOMfdB5cRb3ugnrvPTdjflDB6qxHwvrsvLPWDV6MGDepy4IEdGD48rEc1cuQ8TjmlRqwmISIi8hM1NsExs+OB46O37aNt3yjRAFji7rFRR52AqcBsoFvCpS4mLKHwgJkdFpXrQ5gjZxpwYyWEOzy672dANzO7NUmZwXEzFu8KfGBmn0QxLIo+wxGEzzqTFIlWJuXldYpLcOYqwRERkRqrxiY4QC+K+73E7Bi9ICQz11CGqBanN/BH4CjgGGABYQ2o29x9eSXE2i3a7he9khlOmFEZwrIPTwH7A4MIw9TXEfoMPQQ8EE1EWKOECf9Ca546GouISE1mW7ESgtQQvXv39gkTJlT5fdau3UTLlg9RUBC6Mi1degmtW29T5fcVEREpRdKZZ3N9FJVUoiZNGrDvvu2K3o8apdFUIiJSMynBkbSUHC6uZioREamZlOBIWjThn4iIZAMlOJKW+CUbJk5cxJo1mzIYjYiISHJKcCQtrVtvwx57tAGgoKCQsWMXZDgiERGRn1KCI2mL74czYsScDEYiIiKSnBIcSZvWpRIRkZpOCY6kLb6j8dixC9i4sSCD0YiIiPyUEhxJW8eOTenevSUAGzYU8NlnNWbJLBEREUAJjlRQXl7xaCoNFxcRkZomrQTHzGab2W1mtkNVBSTZQRP+iYhITZZuDU4X4CZgupl9aGa/NrNGVRCX1HDx/XBGjZrHli2FGYxGRESkpHQTnHOBMdF5hwDPAQvM7BEz27+yg5Oaq3v3lnTo0ASAVas28cUXizMckYiISLG0Ehx3f8bd84AewN+A+UAL4EJgrJl9YWZXmFmbyg9VahIz03BxERGpsSrUydjdv3P33wPbA8cA/wE2A3sA9wBzzexVMzvGzJIuYy7Zr+S6VJrwT0REao6tGkXlwXvu/kugI3AFMBloAJwAvAXMMbPbzWzHrQ1WapbEGhx3z2A0IiIixSptmLi7L3P3B4CLgNGARa+OwA3ANDN73cx2rax7SmbtvnsbWrUKfcwXLVrHtGnLMxyRiIhIUCkJjpm1NbOrzOxL4BOgf3RoAvB74CNCsvNz4DMz61cZ95XMqlPHSqwuruHiIiJSU1Q4wTGzumb2czN7A5gL3AXsDqwEHgJ6ufsB7v43dz8C2AX4H7ANoYOy5ABN+CciIjVRvXRPMLPdgbOB04C2hJoZgI+BJ4F/u/vGxPPc/TszOwlYAuxT4YilRsnP71L0tRIcERGpKdJKcMxsHLBf7C2wEHgWeNLdvyvrfHdfa2YLCRMGSg7Yd992NG5cj3XrCpg9exU//LCK7bdvnumwRESklku3iao34MB7hFFSnd39hvIkN3HuA/6Y5n2lhqpfvy59+3Yseq9+OCIiUhOkm+DcAnR192Pd/Q1335LuDd397+5+W7rnSc2lCf9ERKSmSauJyt3/VFWBSPbShH8iIlLTpLuaeF0z297MOpajbMeobKXNtSM1U58+HahfP/wzT526jMWL12U4IhERqe3STT5OBr6nfH1o7onKnphuUJJdGjeuT+/e7YvejxqlZioREcmsiiQ4AE+Vo+yjhJFWp6R5D8lC8f1wNFxcREQyLd0EZw+gABhXjrKjo7J7pRuUZJ/4Cf80kkpERDIt3QSnI7CqPKOn3L2AMKtxmf11JPv179+J2LrxkyYtYtWqn8z1KCIiUm3STXDWAc3NrMzRV2ZWH2gObKpIYJJdWrZsxN57twOgsND55JP5GY5IRERqs3QTnG8IQ8uPKkfZo4D6wLR0g5LspHWpRESkpkg3wXmd0HH4PjNrn6qQmXUA7ifMevxGRYOT7KIJ/0REpKZIN8F5BJgN7AhMNrNrzGx3M2sWvfYws+uAz4EdCKuMP1ipEUuNFT/h36efLmDDhoIMRiMiIrVZWgmOu68DjgXmEVYSvwP4AlgRvSYDf42OzQOOdfc1lReu1GTbbdeEHj1aAbBp0xbGj/8xwxGJiEhtlfYsw+4+BdgbuBtYRGiyin8tBO4C9nb3ryovVMkGJZdtUD8cERHJjAoto+Duy939OnfvQGiKOjB67eDuHd39endfVpmBSnbQhH8iIlITpLXYZjLuPpvQL0ekRIIzZsw8CgoKqVdPy5GJiEj10m8eqVRduzanc+dmAKxZs5nPP1+U4YhERKQ2qnANjpl1Jizd0Iow301K7v5cRe8j2cXMyM/vzEsvTQXCsg3xC3GKiIhUh7QTHDPrA/wd2D+N05Tg1CJ5eZ2KEpwRI+Zy5ZW9MxyRiIjUNmklOGa2H/AR0IgwYmouYTj4hsoPTbJV4oR/7o7FFqoSERGpBun2wbkV2Ab4Cujt7tu7e193P6S0V0UCM7OTzOxBMxtpZqvMzM3shQpeq7OZPW1m881so5nNMrP7zaxVOc+/Kbq/m9nhpZQ708zGmdkaM1tpZsPN7GellK9rZlea2Rdmtt7MlpnZf82sX0U+Z03Rs+e2bLvtNgAsXbqeqVOXZjgiERGpbdJNcPoRll/4tbtPrIJ44t0EXAr0ItQSVYiZdQc+A84GxgH3ATOBy4FPzGzbMs7fF7gZKHXCQjO7GxgMdACeAF4A9gTeMrNLk5Q34GXgXqAB8BBhKYx8YISZ/bzcH7KGMTOtSyUiIhmVboLTCFhTTRP4XQn0IKxI/putuM4jQDvgt+5+vLvf4O6HEhKdXYDbU51oZo2A54HxhOQjVbl+wNXADGAvd7/S3S8B9gOWAXebWbeE004BTgLGAL3c/Vp3Pxc4BNgCPGFmzSrygWsCrUslIiKZlG6C8x3Q0My2ev6csrj7MHef7u5e0WtEtTcDgVnAwwmHbwHWAqebWZMUl/grYSLDs4DCUm51UbS93d2Xx3a6e+y+DQk1SPFiSdtN7r4h7pzxwCuE5S5OKuWeNVrijMZb8c8oIiKStnQTnGcIzSnZ0nwS6/8z1N1LJCjuvhoYDTQmzMJcgpkdSmjG+p27Ty/jPodG2/eSHHs3oUysZqgfsA4YWZ5zsk2vXu1o2jTMHjB37mpmz16V4YhERKQ2STfBeQAYCjxqZn2rIJ7Ktku0nZbieCxx6RG/08xaEPrTjCR85pSi2p9OhKa7BeW8R3egLjDT3ZMtuZ00rmxSr14d+vVTPxwREcmMdJuabiJ01D0AGGVmIwn9U1aXdpK7/7Fi4W21FtF2ZYrjsf0tE/Y/CLQGBpSjiawi96hoXEXM7ALgAoDtt9++jBAzIz+/M0OHzgLChH9nnLF7ZgMSEZFaI90E51bCKKrYpCb5QF4p5S0qn6kEJ21mdiJwOnCJu8/MdDypuPvjwOMAvXv3rpEdXDSSSkREMiXdBOc5QsKSLWI1IS1SHI/tXwFgZq2BR4EPgX9UxT224pysc8ABHWjQoC6bNm1h2rTl/PjjWtq3T9WfW0REpPKkleC4+1lVFEdV+TbapurLsnO0jfXR2R5oAxwGFKaYfff9aP+V7n6/u681s3lAJzPrkKQfTuI9IAwn3wLsaGb1kvTDSXZO1mnUqB59+nRg5MhQezNq1FxOOmmXMs4SERHZerm+mviwaDvQzEp81miOmf6EkUxjo91LgadSvGIdf9+N3sfPBfRRtD0qSQxHJ5QhGhY+hjCCK1kT30/OyVZqphIRkUzIiQTHzOqb2a7RvDdF3H0GYdRXN+CShNNuA5oAz7v72qj8HHc/L9mLkJAA3Bvt+yDuWo9G2xvjl3+IJve7BNhIGGIfL9YE9udo2HjsnP2Bk4HFwGvlfwo1kyb8ExGRTKjQhH1mtgNhpuEjgC5AI3evF3e8JfBbQn+dv7n75grc43jg+Oht+2jb18wGR18vcfdroq87AVOB2YRkJt7FhOTkATM7LCrXhzBHzjTgxnRjS+TuY8zsXuAq4Asz+zdhvqCTCaOxLosm/Yv3MnACYTK/SWb2FrBtdE5d4Hx3z/rJY/r27UidOkZhoTN58iJWrNhAy5aNyj5RRERkK6Sd4JjZLwidjRtTPJqqRMdjd18RTZSXB0yhYjURvYAzE/btGL0gJDPXUAZ3n2FmvQkjuY4CjgEWAH8HboufeXhruPvVZvYlocbmAsLMxxOBu9z97STl3cxOJSRf5wCXEVZlHwH82d3HJJ6TjZo3b8g++7Tjs88W4g5jxsznmGN2LPtEERGRrZBWE5WZ7Qq8SGjaeZwwTHxJiuJPEBKglKtpl8bdb3V3K+XVLa7srMR9Cdea4+5nu3sHd2/g7l3d/Yp0kht3Pyu6xwellBns7vu7exN3b+buBydLbuLKF7j7fe6+p7tv4+6t3P2YXEluYhKXbRAREalq6fbBuZaw4OZ97v4bdx9FGA2UTCwROKCiwUluiO+HowRHRESqQ7oJzmGE5qg7yyro7gsJi1l2qUBckkMOOqh4JNWECT+ybl3aXbJERETSkm6C0x5YHSUv5bGR0NlWarG2bRvTs2drADZvLuTTT5Mt2SUiIlJ50k1w1gJNzKxuWQWjeWZaAssqEJfkmPz84oq82MR/IiIiVSXdBOfr6Jz9ylH25KjsZ+kGJblHE/6JiEh1SjfB+RdhZNSfEmcGjmdmewJ/I/TXebHi4UmuiO9o/Mkn89m8OVXfdBERka2XboLzGPAFcDjwYTQnTj0ISY2Z/czMHiYsfdAaGA28UonxSpbq0qU5Xbs2B2DdugImTlyU4YhERCSXpZXgRDMSH0VodjoY+DchkQH4HHgTuAjYhpDknODu2bT6uFShkss2qJlKRESqTtprUbn7j0A/wmy9Y4DNhGYrI8zeOw74DZDv7qkmAZRaSPPhiIhIdanQWlTuXgA8CTwZjahqTUiWlkbHRH4ifkbjUaPmUVjo1KljpZwhIiJSMVu9mri7b3H3xe6+UMmNlKZHj1a0a9cYgOXLN/D116rgExGRqrHVCY5IeZmZhouLiEi1SNlEZWb50Zfr3H1Cwr60uPuIipwnuSc/vwuvvTYdCB2NL7lknwxHJCIiuai0PjjDCfPYfAvslrAvHV7GfaQWSazBcXfM1A9HREQqV2mJxw+E5GR+kn0iFbLXXm1p3rwBq1ZtYsGCtcycuZLu3VtmOiwREckxKRMcd+9Wnn0i6ahbtw79+3fi3Xe/B2DEiDlKcEREpNKpk7FUO82HIyIiVU0JjlS7kjMaz8tgJCIikqvSSnDMrLWZnWFmx5Wj7KCobMsKRyc5qXfv9jRqFFpHZ8xYwfz5azIckYiI5Jp0a3DOAJ4B9i1H2fyo7GnpBiW5rUGDuhx4YIei91qXSkREKlu6Cc4vou3L5Sj7NGF9qhPSvIfUAprwT0REqlK6CU53YIO7f1tWQXefAmwAdqpIYJLb8vO7FH2tGhwREals6SY4bYD1aZRfB7RL8x5SCxx4YAfq1g0T/H355RKWLUvn20pERKR06SY4y4GWZta8rIJm1gJoCaysQFyS45o2bcB++21X9H7UKI2mEhGRypNugvMZoV/N6eUoe3p0/c/TvIfUEiWHi6uZSkREKk+6Cc7zhATnDjM7IlUhMxsI/I2wrMPzFQ9Pcllenib8ExGRqpHWIpju/oqZnQccBrxrZu8B7xLWqALoChwDDCQkT8Pd/YVKjFdyyEEHFY+kmjhxEWvWbKJp0wYZjEhERHJFRVb5PhF4iZDIHAMcnXA8tjT0u8CvKh6a5LrWrbdhjz3a8NVXSygoKGTs2AUcfnjXTIclIiI5IO2lGtx9lbv/DDgWeIVQe7Mxev0Q7TvW3Y91d3UwllKpH46IiFSFitTgAODu7xJqaUQqLC+vM4888jmgfjgiIlJ5tNimZFT8jMZjxy5g48aCDEYjIiK5QgmOZFSnTs3o3r0lABs2FPDZZwszG5CIiOSElE1UZnZG9OVKd38zYV9a3P25ipwntUNeXidmzFgBhGaqfv06lX6CiIhIGUrrgzOYMI/Nt8CbCfvSpQRHUsrP78zgwV8DoaPxDTf0yXBEIiKS7UpLcEYQkpkfkuwTqTTxE/6NGjWPLVsKqVtXraciIlJxKRMcdx9Qnn0iW6t795Z06NCEBQvWsmrVJr78cgm9emmNVhERqbiUfyab2c1mdmV1BiO1k5lp2QYREalUpbUD3ApcG7/DzL43s7FVGpHUSvET/o0YMSeDkYiISC4orQ+O89MEqCvQsOrCkdqq5IzG83B3zKyUM0RERFIrrQZnGbCtmTWrrmCk9tp99za0atUIgEWL1jFt2vIMRyQiItmstBqcsYTFNIeY2avAmmj/NunOh6N5cKQsdeoYBx3UibfemgGE4eK77NI6w1GJiEi2Ki3B+SNwCHAwkB+3vznwTJr3STvBMbOTonv3AvYGmgEvuvtpFbhWZ8LnOQrYFlgAvAHc5u7LE8o2j8ruB3QHWgOrgFmEVdSfcPe1CecMj2ItzdPufm7cObcCt5RS/mh3f6+Ma+aUvLziBGfEiLmcd95eGY5IRESyVWnDxMebWS/gAmB3YBtgALAZ+KQaYruJkNisAeYCu1bkImbWHRgDtCNMWPgNcABwOXCUmfV396Vxp7QmfOZxwDvAYqAFcChwH3C+mfV191Vx5wwGhqcI4bLomqkWJn2WkDwl+q6Mj5Zz8vO7FH2tlcVFRGRrlLqauLt/B1wXe29mhcAydz+kqgMDriQkNt8RakeGVfA6jxCSm9+6+4OxnWZ2b3SP24GL4srPAVq4++bEC5nZC8Cvo/J3xva7++BkNzazXQi1NAspng060WB3H17+j5O79t23HY0b12PdugJmzVrFnDmr6NKleabDEhGRLFTaPDjbm1niokCzCQlAlXP3Ye4+3d0rPHNyVHszkFBD8nDC4VuAtcDpZtYk7r5bkiU3kVej7c7lDOGCaPtMKdeUSP36denbt2PR+5Ej52UwGhERyWaljaKaRWimiTcYeKWqgqkCsZqmoe5eGH/A3VcDo4HGwIHlvN5x0faLsgqaWUPgDMJw+ydKKXqQmV1jZteb2clm1qacseSkkvPhqJlKREQqptQmKiBxIpJbCB10762acCrdLtF2Worj0wk1PD2AD+MPmFk9Qj8gCH1o8ggdnodResIScwLQBnjf3WeWUu5PCe83mtldwM1bU3uVrUrOaKwJ/0REpGJKS3DWEzrXJsqm2ddi8a9McTy2v2WSY/X46Sin54GL3X1DOe4da556PMXxycA5hM7JCwj9hAYCfyYkVnWB36e6uJldELvH9ttvX45wskOfPh2oX78OmzcXMnXqMhYvXkfbto0zHZaIiGSZ0pqopgGNzOy3ZlbrfsO4+wZ3N8Iz6gycBRwOTDCzbqWda2Y7E0acpexc7O6vu/sz7v59dK8f3P1JwtxDm4FrSmuucvfH3b23u/du27Zt+h+whmrcuD69e7cvej9qlPrhiIhI+kpLcJ4i1NbcB6w2sy3R/u3MbEsar4Iq/xSpxWpoktVExe9fkeoCHsxz92cJzU67AA+Vcd8Kdy5294mEvk/1gb7pnJsrSi7boH44IiKSvpQJjrs/BPwBWEJIdGJNU5bmq7Qkqqp9G217pDgeGw2Vqo9OCe4+lpAMDUhVxswaAGdSdufi0iyOtk1KLZWj8vKKB++po7GIiFREWfPg3A7cbmZtCaONvif88j2gGmKrDLG5cwaaWZ34kVTRGlv9gXWEZSnKFJ3THFhdSrFfAG0pu3NxqnvUB/aN3qZ9fi7o378TZuAOkyYtYvXqTTRr1iDTYYmISBYpV+2Kuy9299nR2y3uPjudVxXGD4SkwMx2jea9iY97BjAU6AZcknDabYQakufjl14wsz3NrFGSezQgNE3VIcxwnEqseeqxUuJtFk0CmOwe9wPbE2ZcnlDKfXJWy5aN2HvvdgAUFjpjxqgfjoiIpKesYeKJDgE2VUUgiczseOD46G2s12lfMxscfb3E3a+Jvu4ETCVMRNgt4VIXE5ZqeMDMDovK9SF8lmnAjQnlzwXONrPR0fVWAB0JI5zaE5q9riEJM9spuu5CYEgpH29bYKqZTYjiWUCo9TkE2IHQLHhq4tw9tUleXic+/3wREJqpjjxyhwxHJCIi2SStBMfdP66qQJLoRejLEm/H6AUh+UiaaMRz9xlm1pvixTaPISQUfyfJYpuE2YqbEjr49iUs8rkKmALcAzzi7utS3O58Qr+jsjoXLyPUBh0AHEmYZ2cTMAO4A7jX3ReV9dlyWX5+Zx58cBKgGY1FRCR9VtpcctF6Tavc/dYkx3oC9d095ay+ZvYa0NLdD6uEWCWF3r17+4QJudWatXDhWtq3/wcADRrUZeXKy2jUKN0KRxERqQWSzs9XVh+cKyjuU5LoI2BiGef3o5QRRyKpbLddE3r0aAXApk1bGD/+xwxHJCIi2WRrh3Bn06zGkmVKLtug4eIiIlJ+mZyjRqRUmvBPREQqSgmO1FjxCc7o0fMoKKi1g8pERCRNSnCkxuratTmdOzcDYM2azUXDxkVERMqiBEdqLDNTM5WIiFSIEhyp0bQulYiIVIQSHKnRStbgzKO0eZtERERiyjNzWlszS7boYxuAFMeKzq1QVCKRnj23Zdttt2Hp0vUsXbqeqVOXsttubTIdloiI1HDlSXDq8tP1neKVdgxAf3JLhZkZeXmdeOON74BQi6MER0REylJWgnNbtUQhUoq8vM5FCc6IEXO58MK9MxyRiIjUdKUmOO6uBEcyLr4fzogRc3F3zDSJtoiIpKZOxlLj9erVjqZN6wMwd+5qZs9eleGIRESkplOCIzVevXp16NdPw8VFRKT8lOBIVtCEfyIikg4lOJIVNOGfiIikQwmOZIUDDuhAgwZ1AZg2bTkLF67NcEQiIlKTKcGRrNCoUT0OOKB90Xs1U4mISGmU4EjWSFy2QUREJBUlOJI1EufDERERSSWtBMfMfhu9OlZVQCKp9O3bkTp1wgR/kycvYsWKDRmOSEREaqp0a3DuA+4GllRBLCKlat68Ifvs0w4AdxgzZn6GIxIRkZoq3QRnCbDa3TdVRTAiZcnLUzOViIiULd0EZyLQwszaVkUwImXRhH8iIlIe6SY4D0Tn/KEKYhEp00EHFU/4N378j6xfvzmD0YiISE2VVoLj7u8C1wAXmdnzZrZ31YQlklzbto3p2bM1AJs3F/LppwsyHJGIiNRE9dIpbGYzoy8LgF8BvzKz9cBSYEuK09zdu1c8RJGS8vO7MHXqMiD0wxkwYPsMRyQiIjVNWgkO0C3JvsbRKxVP8x4ipcrL68Rjj00G1NFYRESSSzfBOaRKohBJQ3xH408+mc/mzVuoX79uBiMSEZGaJq0Ex90/rqpARMqrS5fmdO3anNmzV7FuXQETJy6iT58OmQ5LRERqEC3VIFlJw8VFRKQ0FU5wzKyemfUxs5PM7IzKDEqkLJrwT0RESlOhBMfMrgd+BMYArwDPJBxvaWZTzOw7rVslVSG+BmfUqHkUFqovu4iIFEs7wTGzF4G/AK2A7wlDxktw9xXAx8AOwClbF6LIT/Xo0Yp27cLgveXLN/D111oeTUREiqW7mvgpwKmE2pt+7r4TsCxF8RcBAw7fqghFkjAz8vKKZzVWM5WIiMRLtwbnXMK8Nle4+6dllJ0AFAJ7VCQwkbLk53cp+lodjUVEJF66Cc4+hARnSFkF3X0DsBLQwpxSJRJrcNzVD0dERIJ0E5ymwGp331jO8g1IvYSDyFbZa6+2NG/eAIAFC9Yyc+bKDEckIiI1RboJzmKguZk1K6ugme0MNAHUdiBVom7dOvTvH1+LMyeD0YiISE2SboIzOtr+shxlryU0Zw1L8x4i5VZywr95GYxERERqknQTnAcJI6P+bGZJOw+bWUMzux04j5DgPLR1IYqkFp/gaCSViIjEpJXguPto4C6gPfCpmb0JNAMws3vN7N/APOCG6JSb3f3rigQWzZD8oJmNNLNVZuZm9kIFr9XZzJ42s/lmttHMZpnZ/WbWKknZ5tGxkVH5DWa2yMzGmdkVZtYkyTkDovhSvf6WIq66ZnalmX1hZuvNbJmZ/dfM+lXkc9ZGvXu3p1GjsKTajBkrmD9/TYYjEhGRmiDd1cRx9+vNbD7wJ+C4uEOXE2p3ANYCv3P3ram9uQnYG1hD6Meza0UuYmbdCTMutwPeBL4BDojiPcrM+rv70rhTWgMXAOOAdwj9jloAhwL3AeebWV93X5Xkdh8Dw5PsH5UkLgNeBk4CviXUdLUGTgZGmNmJ7v5m2h+4lmnQoC4HHtiB4cND/5uRI+dy8skV+lYREZEcknaCA+DufzezwcCJQD+gA6E2aCHwCfCqu6eaALC8riQkNt8BB1PxvjyPEJKb37r7g7GdZnZvdI/bgYviys8BWrj75sQLRTVIv47K35nkXsPd/dZyxnUKIbkZAxwWDavHzB4lJERPmNlH7r66nNertfLyOhUlOCNGKMEREZFSmqjM7AwzS9mZ2N1XuvvT7n6eux/r7ke7+1nu/lglJDe4+zB3n+5bMblJVHszEJgFPJxw+BZCTdPp8c1O7r4lWXITeTXa7lzRmOL8JtreFEtuovuPJ6zv1ZaQAEkZNOGfiIgkKq0PzmDg/vgdZvaRmb2atHTNdEi0HeruhfEHopqR0UBj4MByXi/WJPdFiuM7mdmlZvZ7MzsnGir/E2bWiFDztQ4YmaTIu9H20HLGVasdeGAH6tYNraNffrmEZcvWZzgiERHJtNKaqJyfJkADCOtQZYtdou20FMenE2p4egAfxh8ws3qEfkAQ+sbkAb0ITWVPpLjer6NX/HVeA8539+Vxu7sDdYGZ7v6TxUqjuIjikjI0bdqA/fbbjnHjwrfm6NHzOe647hmOSkREMqm0GpxVwLZm1rC6gqkCLaJtqiluY/tbJjlWj9CMdQtwGSG5eR4YFN+kFFlMGDm2J2FUWVvgaGASoZ/SW2YW/6y3Ji4AzOwCM5tgZhMWL16cqlitUXK4uCb8ExGp7UqrwZlIqLF5JupcGxt/28DM8igeMVUmdx9R4QgzJEpiLBrt1JGwKvpfgQlmdpS7z4or+zUQPxx+DfCemY0BPgf6E5q3Km1UlLs/DjwO0Lt371q/CFNeXmfuvnsCoAn/RESk9ATnDsLopZOjV0wrkg+FTsXLuE9VitWEtEhxPLZ/RaoLRJ2c5wHPmtm3hFFiDwE/K+vm7r7KzF4CbgTyKU5wtjouKemgg4qXbPjss4WsWbOJpk0bZDAiERHJpJSJh7sPNbNDCM0zuwPbAN2AQrJnfalvo22qviyxTsCp+uiU4O5jzWwFoWarvGLtR/ETBM4gLEK6o5nVS9IPJ624BFq33oY99mjDV18toaCgkLFjF3D44V0zHZaIiGRIqTUr7j6SuFE+ZlYILHb3Hao6sEoSmztnoJnViR9JFS0Y2p8wkmlseS4WndMcSGdumtgIrZmxHe6+IWq+yoteiXP8HB1tP0rjPrVefn5nvvpqCRCGiyvBERGpvdJdi6pGMrP6ZrZrNO9NEXefAQwl1DxdknDabYRalefdfW3ctfaMhnEn3qMBoWmqDmGG4/hjvVPEdRqheW8T8K+Ew/+Itn+Ov5+Z7R+dsxh4Ldl1Jbm8PK1LJSIiQVp9Y9y92hIiMzseOD562z7a9o1mUAZY4u7XRF93AqYCswnJTLyLCbMFP2Bmh0Xl+hDmyJlG6B8T71zgbDMbHV1vBaGT8cAojm+BaxLO+beZFQATCM13jYD9CUtCFAAXxndKjrwMnECYzG+Smb0FbEtIbuoShpYnWw5CUsjLK+6HM3bsAjZt2kKDBnUzGJGIiGRKpXb+NbM2QG+gITByK2c07gWcmbBvx+gFIflITDR+wt1nRDUsfwSOAo4BFgB/B25LmJ8GwmzFTYG+0asZYcj8FOAe4BF3X5dwzj8Io6z6A20II8zmEU2W6O6Tk8TlZnYqIfk6h9DXaQMwAvizu48p67NJSZ06NaN795bMmLGCDRsKmDDhR/r161T2iSIiknMsnZUQzOxA4LfAZHe/I+HYaYR1n2KdadcDF7j7S5UUq6TQu3dvnzBhQqbDqBHOPvtdBg8OI/b/9rc8rr++T4YjEhGRKpZ02pp0m5xifUpKNJ2Y2U7A04SajwJgI2EJhMFmtkfaoYpUUMkJ/9QPR0Sktko3wTko2r6VsP9CQnPXx4R+JC0JnWrrAZdvRXwiaYnvaDxq1Dy2bCkspbSIiOSqdBOc9oT5WxKnij2WMKHfLe6+xt03AddHxw7euhBFyq9795Z06BBaSVet2sSXXy7JcEQiIpIJ6SY4rYHVHtdxx8xaA7sSmq2K5sxx99mEOWY6J15EpKqYmYaLi4hI2gnOWqBFNCdMTKyG5hP/aY/lTYQaH5FqE98PZ+RIJTgiIrVRugnOFEJv5RPj9p1FaJ4aHl/QzJoS1lRaUPHwRNKXWIOTzkhBERHJDekmOP8iJDiPm9nDZvYfwirZBcArCWX7RWWnb3WUImnYY482tGzZEIBFi9YxfXriVEciIpLr0k1wHiFMRNcEuIjimYb/GPW5iXcKoWZH6ylJtapTR/1wRERqu7QSHHffDBxGmGH4UeAOYIC73x5fzszqE1YfH8JPh5SLVLn4ZRuU4IiI1D5pL9Xg7luA56NXqjKbgVO3Ii6RrZKf36Xoa3U0FhGpfXJiNXGRRPvu247GjUP+PmvWKubM0bqlIiK1iRIcyUn169elb9+ORe9Hjkycm1JERHJZ2gmOmdU1s4vM7AMz+9HMNprZllJeBVURuEhZ1NFYRKT2SqsPjpk1Az4AepNi9c5kp6UblEhl0IR/IiK1V7qdjG8G9iesFv4E8AZhXaoNlRuWyNbr06cD9evXYfPmQqZMWcrixeto27ZxpsMSEZFqkG6CcyJhbpvfuPvgyg9HpPI0blyf3r3b88kn84GwuvgvfrFzhqMSEZHqkG4fnI6EWYtfrIJYRCqdmqlERGqndBOcxcD6aJ4bkRpPE/6JiNRO6SY47wHNzKxnVQQjUtn69++ERd3cJ01axOrVmzIbkIiIVIt0E5w/AsuBv0fLMYjUaC1bNmKvvdoCUFjojBmj+XBERGqDdBMcA84hDBOfYGZnmtnuZrZ9aa/KD1uk/Er2w1GCIyJSG6Q7iur7uK9bAE+X4xyvwH1EKk1+fmcefHASoH44IiK1RUVqcNJ9aTkIyaj4GY3HjVvAhg2aXFtEJNellXy4e52KvKoqeJHy2G67JvTo0QqAjRu3MH78jxmOSEREqpqSD6kVtC6ViEjtogRHagVN+CciUrsowZFaIX7Cv9Gj51FQUJjBaEREpKpVaHSTmW0DnAT0Jyzf0ITUq4a7ux9WsfBEKke3bi3o3LkZc+euZs2azUyevIj99muf6bBERKSKpJ3gmNmhwEtAW0JS47FDccXi9zkiGWZm5Od35qWXpgKhH44SHBGR3JVWE5WZ7QS8CbQDPgSuJCQxq4DzgBuBYdG+pcBlhIkBRTIuvplKE/6JiOS2dPvgXEtojnrB3Qe6+9+j/evd/Wl3/2vUHHUU0Ag4G3i58sIVqbj4jsYjRszFXZWLIiK5Kt0E51BCk9OfSyvk7kOBK4B9gWsqFJlIJevZc1u23XYbAJYuXc/UqUszHJGIiFSVdBOcTsAmd58Wt6+QUFuT6CWgAPi/CsYmUqnMTM1UIiK1RLoJzkZgTcK+1UALM2sQv9PdNwBrgR0qHp5I5dKEfyIitUO6Cc5cQjITP/pqRrTtHV/QzNoTFuRMNXxcpNqpH46ISO2QboIzBagL7B2370NCEnOzmTUCiGpzYh2QJ21tkCKVpVevdjRtWh+AuXNXM3v2qgxHJCIiVSHdBOddQjLz87h9DxCarY4A5pjZaEJNz0mEDsn3VEKcIpWiXr069OsX3w9HzVQiIrko3QTn34S5bb6O7XD3ecBxwHxgW6Av0AZYD1zh7m9WTqgilSOxmUpERHJPWjMZu/sa4OEk+z82sx0IyU1nYCUw2t1XVkqUIpUofiSVEhwRkdyUVoJjZs2jL9e6+5b4Y+5eAIysrMBEqsoBB3SgQYO6bNq0hWnTlrNw4Vq2265JpsMSEZFKlG4T1QpgGWGBTZGs1KhRPQ44oHgdKvXDERHJPekmOGuAVe4+pyqCiWdmJ5nZg2Y20sxWmZmb2QsVvFZnM3vazOab2UYzm2Vm95tZqyRlm0fHRkblN5jZIjMbZ2ZXmNlP/tQ3s15mdquZjTazBWa2yczmmdk/zWzfFDHdGn2mVK+jKvJZpXzi++Fowj8RkdyT7mri3wO7mFm9qEmqKt1EGI6+hjAqa9eKXMTMugNjCAuEvgl8AxwAXA4cZWb93T1+zv7WwAXAOOAdYDFhPp9DgfuA882sr7vHjy9+FOgDfAb8J4q5F3AKcJKZnezu/0kR4rPArCT7v0v7w0q55ed35i9/+RRQPxwRkVyUboLzL+CPwPGEEVVV6UpCYvMdcDBhlfKKeISQ3PzW3R+M7TSze6N73A5cFFd+DtDC3TcnXiiqQfp1VP7OuEMvAqe5+3cJ5X8NvAA8bmZvu/umJPENdvfhFflgUnF9+3akTh2jsNCZPHkRK1dupEWLhpkOS0REKkm6TVR3AROAx8zssCqIp4i7D3P36b4VU81GtTcDCTUkiaO/biEsJXF6fLOTu29JltxEXo22OyfE+mBichPtfxGYThg+v2dFPoNUjebNG7LPPu0AcIfRo9VMJSKSS9KtwbkB+AjoCQw1sy+ATwjNOFtSneTuf6xwhFvnkGg71N0L4w+4++poUsKBwIGEGZnLcly0/SKNGGLJUqomvYPMrDdhhuhZwIfuviSN60sF5eV15rPPFgKhmeqYY3bMcEQiIlJZSk1wzOwjYKm7/zLadSthduLY+lJ7A3uVdomofKYSnF2i7bQUx6cTEpweJCQ40XpbN0VvWwN5hH41w4AnynNzMzsQ2A2YB3yVotifEt5vNLO7gJu3pvZKypaf35n77/8M0EgqEZFcU1YNzgDgx7j3zxESlmzRItqmmnAwtr9lkmP1CM1Y8Z4HLo5WSi+VmbUmPC+AKxPnDQImA+cAw4EFhH5CA4E/ExKrusDvS7n+BYTO0Gy//fZlhSNJHHRQ8YR/48f/yPr1m9lmm/oZjEhERCpLujMZn1VFcdQ4URJjZmaEeX8OB/4KTDCzo9x9Vqpzoz49bxL66tzp7q8mlnH31xN2/QA8aWYTgbHANWZ2b6rmKnd/HHgcoHfv3tmUdNYYbds2pmfP1kyduozNmwv59NMFDBigZFFEJBek28k428RqaFqkOB7bvyLVBTyY5+7PAicQmr0eSlU+Sm7eAQ4C7nX369MJ2N0nEoao1ycsfSFVKD+/S9HXGi4uIpI7cj3B+Tba9khxPDYaKlUfnRLcfSwhGRqQ7LiZNSOsuH4woebm6vIGmmBxtNX6AVUsfl0qTfgnIpI7cj3Bic2dM9DMSnzWKBnpD6wjNAmVKTqnOUlGRJlZC2AooTPy7enW3MRdpz4Qm/14ZkWuIeUXP6PxmDHz2Lw55WBAERHJIuXpg9PCzJ7einu4u5+7FeeXKUoKugOb3X1G3I1nmNlQQufdS4AH4067jVBD8pi7r4271p7A9MSOxGbWgNA0VYfQBBV/rBUhuekN3FLWsPgoUero7t8m7G9AmC15e8KMyxPK/vSyNbp0aU7Xrs2ZPXsV69YVMHHiIvr06ZDpsEREZCuVJ8FpBJxZwevHhomnneCY2fGEGZMBYisj9jWzwdHXS9z9mujrTsBUYDbQLeFSFxOWanggmpxwKmFZhUMITVM3JpQ/Fzg7miNnNqFJqiMhSWpPaPa6JuGc/xCSmxlAHTO7NclHesPdP4++3haYamYTongWAG2jmHYAlgCnJs7dI1UjP78zzz8/BQjDxZXgiIhkv/IkOJsJk/lVt178NLHaMXpBSD4SE42fiGpxehPm4jkKOIaQUPwduM3dlyec8irQlNDBty/QDFgFTAHuAR5x93UJ5+wQbbvz06HlMbOAz6OvlxFqgw4AjiTMs7OJkCDdQeicvKiszyaVIy+vOMEZMWIu11yzf4YjEhGRrWWlzSVnZoXAj+7esfpCknT17t3bJ0xQa1ZFffvtMnbdNbTCtmrViCVLLqFOHSvjLBERqSGS/sDO9U7GImXq0aMV7do1BmD58g18/bVWyhARyXZKcKTWM7OE4eKaD0dEJNspwRFBE/6JiOQaJTgi/HTCP61zKiKS3ZTgiAB77dWW5s0bADB//hpmzky1PquIiGSDUhMcd6+jEVRSG9StW4f+/YtrcUaMmJPBaEREZGupBkckEr9sg9alEhHJbkpwRCJ5ecUJjjoai4hkNyU4IpHevbejUaMwufeMGSuYP39NhiMSEZGKUoIjEmnYsB4HHli8DpXmwxERyV5KcETiaMI/EZHcoARHJI4m/BMRyQ1KcETiHHhgB+rWDeu2ffnlEpYtW5/hiEREpCKU4IjEadq0Afvtt13R+9Gj52cwGhERqah6qQ6YWX5l3cTdR1TWtUSqWl5eZ8aN+xEIE/4dd1z3DEckIiLpSpngAMOByliQx8u4j0iNkp/fmXvumQBowj8RkWxVWuLxA6kTnLZA4+jrAmBJ9HWbuGuujdsvkjUOOqh4JNVnny1k7dpNNGnSIIMRiYhIulL2wXH3bu6+Q+ILuBeoD3wAHAo0dfeO0ZpVTYBDgKFRmXuic0SyRuvW27DHHm0AKCgoZOzYBRmOSERE0pVWJ2MzOwa4H3jJ3Qe6+3B33xQ77u6b3f1jdz8K+CfwdzM7qlIjFqkG8etSabi4iEj2SXcU1dWEZqvrylH2+mh7TZr3EMk4rUslIpLd0k1wegEr3X1xWQXdfRGwAtgn/bBEMit+RuOxYxewadOWDEYjIiLpSjfBaQA0N7PmZRU0sxZA8+gckazSqVMzdtyxBQAbNhQwYcKPGY5IRETSkW6C81V0zu/LUfZ3QF3gy3SDEqkJ4vvhaF0qEZHskm6C8xBgwLVm9pSZ7ZxYwMx2MrMngGsJ/XUe3PowRaqfOhqLiGSvtCbgc/cXzawvcDFwFnCWmS0EYvPZdwRi89wb8JC7/7OSYhWpVvEdjUePns+WLYXUravVTUREskHaP63d/VLgdOB7QhLTHtg3erWP9s0ATnP331ZeqCLVq3v3lnTo0ASAlSs38uWXmrdSRCRbVGgJBXd/EXjRzHoREpu20aHFwER3/7xSohPJIDMjL68z//rXt0BopurVq12GoxIRkfJId6K/30avjgDu/rm7P+3ud0Svp5XcSC5RR2MRkeyUbg3OfcAW4NEqiEWkxkmc8M/dMbMMRiQiIuWRbh+cJcDq+OUZRHLZHnu0oWXLhgAsWrSO6dOXZzgiEREpj3QTnIlACzNrW2ZJkRxQp45p2QYRkSyUboLzQHTOH6ogFpEaKX7ZBvXDERHJDmklOO7+LmHxzIvM7Hkz27tqwhKpOfLzuxR9rRocEZHskFYnYzObGX1ZAPwK+JWZrQeWEjofJ+Pu3r3iIYpk1r77tqNx43qsW1fArFmrmDNnFV26lLkcm4iIZFC6TVTdolcjwoR+BjQGusQdS/YSyVr169elb9+ORe9HjpyXwWhERKQ80h0mfkiVRCFSw+XldebDD38AQjPVr37VM8MRiYhIadJdi+rjqgpEpCbThH8iItlFKweKlEOfPh2oXz/8d5kyZSlLlqzLcEQiIlIaJTgi5dC4cX16925f9H7UKPXDERGpySq02CaAmW0P9AM6Ak0IHY6Tcvc/VvQ+IjVFfn5nPvlkPhD64Rx//M4ZjkhERFJJO8GJFtp8DDiaUpKaWHHAASU4kvXy8jpxxx3ha/XDERGp2dJdTbwF8DFwDGHumyGEJGYD8CLwAbAm2rcUeBZ4Lt2gzOwkM3vQzEaa2SozczN7Id3rRNfqbGZPm9l8M9toZrPM7H4za5WkbPPo2Mio/AYzW2Rm48zsCjNrUsp9fmZmw81spZmtMbNPzezMMmI7M7r2mui84Wb2s4p8Tql6/ft3IrbO5sSJi1i9WkuyiYjUVOn2wbkS6A6MB3Zx919E+1e6+xnufiTQAfgb0AbY7O5nVyCum4BLgV5AhTs7mFl34DPgbGAcYTX0mcDlwCdmtm3CKa2BCwiTFr4D3Au8CjSLzh1nZj+Z4c3MLgXeAvYAXgCeIDTdDTazu1PEdjcwmPC8nojO2xN4K7qe1DAtWzZir73CMmyFhc6YMeqHIyJSU6Wb4AwiNDld6+4rkhVw93Xu/nvgHuBcM/t1BeK6EugBNAd+U4HzYx4B2gG/dffj3f0Gdz+UkKzsAtyeUH4O0MLdB7j7+e7+e3e/xN17EmqodgMuij/BzLoBdwPLgN5R+SuBvYAZwNVm1jfhnH7A1dHxvdz9Sne/BNgvus7d0XWlhik5XFwJjohITZVugtMdKATGJOxvkKRs1FuB89MNyt2Huft0d/d0z42Jam8GArOAhxMO3wKsBU6Pb3Zy9y3uvjnFJV+Ntok9S88BGgIPufusuGstB/4Svb0o4ZzY+9ujcrFzYrE2JNQ6SQ0Tn+BoXSoRkZor3QSnHrDC3ePXnVoLNDezEh2O3X0JsILQ7JIJsVmXh7p7YfwBd18NjCYsM3FgOa93XLT9ImH/odH2vSTnvJtQZmvOkRogL684wRk3bgEbNhRkMBoREUkl3QRnHtA0Yd9coC6hyaeImW0DtCQkEZkQi2daiuPTo22PxANmVs/Mbo1eD5jZJOBcYBihv0y57uPuCwgJYGczaxxduwnQCVgTHS93XJJ5223XhB49Qv/0jRu3MH78jxmOSEREkkk3wZkBNIiaf2I+ibaJzTCXE0ZTzahgbFurRbRdmeJ4bH/LJMfqEZqxbgEuI3R2fh4Y5O4bKnifFgnbisRVxMwuMLMJZjZh8eLFpRWVShZfi6Ph4iIiNVO6Cc6HhKTlqLh9/4i2l5nZO2Z2u5kNIXTgdcJQ8azi7hvc3QjPpzNwFnA4MKGmdP5198fdvbe7927btm2mw6lV1A9HRKTmSzfB+SfwGmFkEgDuPh64npDMHA3cAPyMkAi9ThhNlQmJNSeJYvtXpLqAB/Pc/VngBEJz1EMVvM/KhG2F45LMysvrVPT16NHzKCgoLKW0iIhkQrqric8Dfplk/91m9l/gREKNx0rgfXd/v1KirJhvo22qviyx0VCp+uiU4O5jzWwFMCDJfdpE9/kk/oCZdSAsYzHX3ddF11lrZvOATmbWIUk/nLTikurXrVsLOnduxty5q1mzZjOTJy9iv/3al32iiIhUm0pbbNPdp7j7n9z9Qne/LsPJDYQOwQADzazE5zSzZkB/YB0wtjwXi85pDiQOm/ko2h7FTx2dUGZrzpEawsxK1OKomUpEpObJ+tXEzay+me2a0PEZd58BDAW6AZcknHYboWbleXdfG3etPc2sUZJ7NCA0TdUhzHAc7xlgI3BpfP+caCmI30dvH004J/b+xvglI6LzL4mu90zyTyw1gSb8ExGp2dJqojKzj4DhwAjgE3ffWBVBmdnxwPHR21jdf18zGxx9vcTdr4m+7gRMBWYTkpl4FxMmJXzAzA6LyvUhzJEzDbgxofy5wNlmNjq63grCkgsDozi+Ba6JP8Hdvzeza4EHCJ2QXwE2AScRmuvucfdPEs4ZY2b3AlcBX5jZvwmTJZ5MWC7isvhJA6XmKZngzMXdSZgKSkREMsjSmSzYzAoJnYkh/BIfT1h8cwQwOtbPZKuDMruVMEQ7ldnu3i0q2w34Pn5fwrW6EFYzPwrYFlhA6Px8W/wswlHZ/oQZhPsSEptmwCpgCvAG8Eiqz2hmxxGSn30JNT1TCLMbpxxFZmZnEWpsdiPMED0RuMvd3y7ls/9E7969fcKECemcIlvJ3Wnb9hGWLl0PwJQpZ9OzZ+LSZiIiUg2S/nWZboJzIZAPHExIAKA44Skg/IL+OHqNimYMliqmBCczfvGLN3jjje8AePTRI7jwwr0zHJGISK2UNMFJqw+Ouz/m7r92986E0T7nEVbBngPUJzT/XAe8DSwzs/GpVtMWyXbxE/6po7GISM2SVh+ceFEn3hnA0wBm1pVQs3MwYSj1DoTVsfclod+KSC5InPBP/XBERGqOyhxF1TzulbhelUjO6dWrHU2b1gdg7tzVzJ69KsMRiYhITIVqcKKVw3tRXGOTB8SGOxuwhjBEO9YfRyTn1KtXh379OjF06CwgjKbq1i3VBNUiIlKd0h0mfi2hk/FBhJqaWH38SuC/FI+o+szdt1RinCI1Un5+56IEZ8SIuZx++u6ZDUhERID0a3DuIIyaWk0YNj2SkNR87ukMxxLJEfEzGmvCPxGRmqMifXCMMD/MLsBO0UvLWUutdMABHWjQoC4A3367jIUL15ZxhoiIVId0E5yTgAeBL4GehJmCXwYWmNkUM3vEzE42s+0qOU6RGqlRo3occEDxQpujRqkWR0SkJkh3Hpz/uPvl7t6LsIL28cD9wOeE1bQvAl4C5pvZN2b2qJmdWpkBi9Q0icPFRUQk87ZmHpzlwJDohZk1J3Q+Phg4EtiL4skA/7nVkYrUUGHCv08BJTgiIjVFpcyDE63AvR9wQPTqQeiMbKSYQlkkV/Tr15E6dcK3+eTJi1i5skrWoBURkTRUdB6cxkB/iufB2Z+wVAMUJzRLKB5lJZKzmjdvyD77tOOzzxbiDqNHz+OYY3bMdFgiIrVauvPg3EGYB2ffuHNjCc0Cwhw4I4CP3X1KZQUpUtPl5XXms88WAmHCPyU4IiKZlW4NzrVxX/9AlMwQEprvKi0qkSyTn9+Z++//DFA/HBGRmiDdBOdpotmK3X12FcQjkpUOOqh4wr/x439k/frNbLNN/VLOEBGRqpTuMPHz3P35dJIbM9NPecl5bds2pmfP1gBs3lzIp58uyHBEIiK1W1oJjpldmGb5hoQlHURyXhguHqiZSkQks9IdJv5weSfui4aOvw0clXZUIlkofsI/rUslIpJZ6SY4Dgw2s5+VVigaRv4ucBiwsIKxiWSV+ARnzJh5bN68JYPRiIjUbukmOOcQOib/y8wGJCtgZs2AoYT5ceYDh2xFfCJZo0uX5nTt2hyAdesKmDRpUYYjEhGpvdLtZPw88FugEfCmmR0Qf9zMWgAfAP2AOcAAd/+2kmIVqfG0LpWISM2Q9lIN7v4w8AegGfBfM9sDwMy2BT4izGr8PXCw5saR2ia+o/HIkUpwREQypUJrUbn77cA9QGtgqJn1JyQ3+wDfEWpuZlVWkCLZIrGjcWGhZzAaEZHaq8KLbbr7tcBTQHvCjMZ7At8Skps5lROeSHbp0aMV7do1BmD58g18/fWSDEckIlI7be1q4hcA/yKsR/U1oVlq/lZHJZKlzIy8vOJZjdVMJSKSGSmXajCzj8p5jfqE4eNbgJfNLPG4u/thFQtPJPvk53fhtdemA6Gj8cUX75PhiEREap/S1qIakOa19kqxX50QpFYpWYMzD3cnSeIvIiJVqLQE5+xqi0Ikh+y1V1uaN2/AqlWbmD9/DTNnrqR795aZDktEpFZJmeC4+7PVGYhIrqhbtw79+3fi3Xe/B0I/HCU4IiLVa2s7GYtIEprwT0Qks5TgiFQBrSwuIpJZaSU4ZvZzM9tiZq+Wo+w7UdljKh6eSHbq3Xs7GjUKLcAzZqxg/vw1GY5IRKR2SbcG55Ro+2g5yj5CmB/nV2neQyTrNWxYjwMP7FD0XvPhiIhUr3QTnH0J892MKkfZD6Oy+6UblEgu0IR/IiKZk26C0xlY6e4byyro7huAFUCnMoqK5KT8/C5FX6sfjohI9Uo3wdkENLVyzFoWlWlaoahEcsCBB3agbt3wX+Wrr5awbNn6DEckIlJ7pJvgzAAaAHnlKHsw0BD4Pt2gRHJB06YN2G+/7QBwh9GjtUybiEh1STfBeYfQcfheM2uSqlB07F7CMg3vVDw8kewWP1xc/XBERKpPugnO34GlwD7AeDM7ycyaxQ6aWTMz+z9gAtCL0Afn3soJVST7aMI/EZHMKG0tqp9w92VmdgLwFrAr8ArgZrYyKtKCUMNjwGrgRHdfUonximSVgw4q7mP/2WcLWbt2E02aNMhgRCIitUPaMxm7+0jCcPF/E4aB1wFaRa860b5XgX3dfXilRSqShVq33oY99mgDQEFBIWPHLshwRCIitUOFlmpw95nu/n+EpOYQwgSAp0Rft3L3k919xtYEFjV/PWhmI81slZm5mb1QwWt1NrOnzWy+mW00s1lmdr+ZtUpStpOZXWZm70blNprZUjN7P6q9Snb94VF8pb2eSjjn1jLKH1WRzyo1j5qpRESqX1pNVIncfS3wcSXFkugmYG9gDTCX0CSWNjPrDowB2gFvAt8ABwCXA0eZWX93Xxp3ymXA9YTRX8OAH4GuwAnA4WZ2n7tflXCbwcDwFCFcBrQG3k1x/FlgVpL935X2uSR75OV15pFHPgfU0VhEpLpsVYJTxa4kJDbfEYacD6vgdR4hJDe/dfcHYzvN7N7oHrcDF8WVHwcMcPcSiZuZ9QTGAlea2Yvu/lnsmLsPTnZjM9sFuAVYSEiukhmsprzcFj+j8SefLGDTpi00aFA3gxGJiOS+rVpN3ILWZtbFzLZP9arItd19mLtPd3ffivi6AwMJNSQPJxy+BVgLnB4/5N3d/5OY3ET7pxI6VQMMKGcIF0TbZ9x9c/kjl1zSqVMzdtyxBQAbNhTw2WcLMxyRiEjuq1ANjpmdCFwMHAg0KqO4V/Q+leCQaDvU3QvjD7j7ajMbTUiADiSsnVWWWJJSUFZBM2sInEH4/E+UUvQgM+sN1CUkYh9q5Fnuyc/vzMyZYbDhiBFz6Nu3Y4YjEhHJbWnX4JjZP4B/EZKHbSgeFp7qtVW1RFtpl2g7LcXx6dG2R1kXMrPmwImEhGVoOe59AtAG+MDdZ5ZS7k/AXcDfgJeBuWb2p/IshyHZI37CP3U0FhGpemklH1HNzYVETTuEzrMQOuLWIyyseRYhoVgCDHT3TCY4LaLtyhTHY/tblnaRKNl4EtgO+EfUXFWWWPPU4ymOTwbOAXYkJIpdgfMJkyPeROgbVFpMF5jZBDObsHjx4nKEI5kUP5Jq9Oj5bNlSWEppERHZWukmH+cRajCud/cX3X1F7IC7F7r7And/DtiPMArpdTOr0OinGuYe4JfASCBxBNVPmNnOhH46KTsXu/vr7v6Mu3/v7hvc/Qd3fxI4htAUdo2ZtUl1D3d/3N17u3vvtm3bpv+JpFp1796SDh1CV6+VKzfy5ZdqhcwFq1dvYvHidZkOQ0SSSDfB2TfavljadaLh45cCTYDfVSy0ShE/w3Iysf0rUl3AzO4kjLYaARzj7hvLcd8Kdy5294mEkVz1gb7pnCs1l5lpXaocsmbNJv7wh1G0a/cI7dv/g8sv/4g1azZlOiwRiZNugtMSWOXuq+L2bQKaJhZ09/GEpqxDEo9Vo2+jbao+NjtH26R9dMzsPuBawhD1o919TVk3NLMGwJmU3bm4NLE2p5QLmkr20YR/2a+w0Bk8+Ct69HiKP/95LBs2FFBY6DzwwET22GMwQ4fOynSIIhJJN8FZQug4HG8ZsE2K5pS6hDloMiU2d85AMyvxWaNFQvsD6wjz28QfMzN7GLgCeB841t3LWw/9C6AtZXcuTsrM6lNcU5b2+VJzJdbgbMUMCJIBI0bMYf/9X+Dss99jwYK1Pzk+e/Yqjjzy35x55n9ZunR9BiIUkXjpJjhzgGZm1jJu3+Roe2R8QTPLJwwhX17h6MrJzOqb2a7RvDdFouUihgLdgEsSTruNUEPyfNSkFruWEToGX0yYfXiQu6fz0yrWPPVYKfE2iyYBTNzfALgf2J4w4/KENO4rNdwee7ShZcuGACxcuI7p06v8v4ZUgpkzV3DSSW9y8MGvMHFi8RxGHTs25dlnj+a5546mdevi2TKee24Ku+32DK+88o2SWJEMSnd+mk+B/YE8woriEBbdPBK418w2AZ8DewL3Uv4h1T9hZscDx0dv20fbvmY2OPp6ibtfE33dCZgKzCYkM/EuJizV8ICZHRaV60NoOpsG3JhQ/mZCZ+r10We5IcmI7c/d/Y0kMe8UXXchMKSUj7ctMNXMJkTxLCDU+hwC7ECoKTs1ce4eyW516hgHHdSJt98OFXMjRsylR4/WZZwlmbJq1UZuv30s998/kU2bthTt32abelx77f5cd93+RSvDH3lkNy6/fBgvv/wNAIsWreOUU97mpZem8sgjh9OpU7OMfAaR2szS+QvDzPIIa0+96u4nR/vqEjrg9iUkNEXFCX1JDnD32WkHZnYrYbbhVGa7e7eobDfCqK2ifQnX6gL8ETiKkFwsAF4HbnP35QllBxP60JTmWXc/K8l97gCuA/7m7ik7V0dz6vyZsCZWN8Jw+03ADEKt0b3uvqiMGIr07t3bJ0xQZU82uOuucVx33QgAzjhjN5599pgMRySJtmwp5Omnv+Kmm0axaFHJlulf/7onf/1rHl26NE967ltvzeA3v3mfefOKu+s1b96AO+88mPPP34s6dTS9lUgVSPofK60EByBa1qAwvtkm2nczcBLQmTB66X3gJnf/vqIRS/kowcken366gAMPDIMQu3VrzvffX1DGGVKdPvxwNlddNZwvvig5t9SBB3bg/vsPpU+fDmVeY+XKjdxwwwgefXRyif0HH9yZJ544kp13blWpMYtIJSU4UvMowckemzdvoWXLB1m3Lqz28cMPF6SsDZDqM336cq65ZjhDhswosb9Ll2bccUc+p5yyK+lOLj5ixBzOO29oib5WjRrV49Zb+3L11ftTr14m50AVySlJ/3Pqf5hINapfv26JdahGjpyXwWhk+fINXHXVMHbf/ZkSyU2TJvX505/6880353DqqT3TTm4A8vO7MHnyGdxwwwHUrRvO37ChgBtuGMkBB7zApEladFWkKinBEalmmvAv8woKCnn44UnsvPNT3HffZ2zeXNyf/6yzdmfatHO56aa+NG5cf6vus8029fnrX/MZP/409t13u6L9kyYtYv/9X+B3vxvB+vVpzQUqIuVUKQmOmfUzs/vNbIiZvWZmN5pZ2Y3VIrWQJvzLrPfe+569936WSy/9sMR8NXl5nZkw4TSeeeZoOnb8ydylW2Wffbbj009/zR135NOoURi8umWL87e/jWPvvZ9jxIg5lXo/ESlHHxwz25aw0vVxhHljviOM8nk+Ov4EYdHIROuA/3P3dys1YvkJ9cHJLuvWbaZlyweLag0WL76YNm0aZziq3Dd16lKuvno4775bctxDt27NueuugznxxB4VaopK1/Tpyzn//P/x8cclk9uLLtqbO+7Ip3nzhlUeg0iOSb8Pjpk1IgwLP4cwI3ETYG9gsJn92syuBM6NLr4QGA/Mj943AV6JhmiLSKRx4/r07t2+6P2oUeqHU5WWLl3PZZd9yJ57Di6R3DRr1oC//S2PqVPP4aSTdqmW5AZg551b8dFHJ/PYY0fQvHmDov2PPjqZ3XZ7hrfemlHK2SJSXmU1Uf0G2I3idZUui7ZOWIDyMmApcJS7d3T3A929C2EiwDmEJOfSKopdJGupmarqbdq0hfvv/4yddnqShx6axJYtobbaDM4/fy+mTz+X66/vU9RkVJ3q1DEuuGBvpkw5m0GDiidgnzdvDYMGvc6pp77NokU/XQ5CRMqvrATnBEIyc627X+juD7v7hcA1hPWSuhLmuikxW7G7jwYuJ9TkDKz8sEWyW15ep6Kv1dG4crk7b701gz32GMyVVw5jxYqNRccOOaQLkyadweOPD2S77TK/lm2nTs14443jeeWVn9GuXXEz5csvf0PPns/w/PNfa7kHkQoqtQ+OmS0lrCDe0t1Xx+1vRpjMz4Edk81UHDVvrQNWu3uLSo5b4qgPTvZZsWIDrVs/hHv4a37Fisto1qxB2SdKqb78cjFXXTWcDz4o+SNpp51acvfdAxg0qHu1NUWla+nS9Vx11TCee25Kif1HHdWNRx89gq5d9WNUJIUKzYPTAlgZn9wARO9XRm9/SHaiu28grKlUucMRRHJAy5aN2GuvtgAUFjqffDI/wxFlt0WL1nLRRe/Tq9dzJZKbFi0acs89A/j667P5+c93qrHJDcC2227Ds88ew3vvnUjXrsWTP7733ix2330wDz44kS1btDydSHmVleDUATakOLYBwEuvP91SyjGRWk39cLbexo0F3HXXOHbe+Skee2wyhYXhx1HdusbFF/di+vRzueqq3jRoUDfDkZbfkUfuwFdfncXll+9LLB9bu3Yzv/3tR+TlvcyUKUsyG6BIltBEfyIZEj/hnxKc9Lg7//nPNHbb7Rmuu24Eq1ZtKjo2cGA3Jk8+k4cfPpy2bbNz+H3Tpg24//5DGT36V+y227ZF+z/5ZD777PM8f/rTJyVWOBeRn1KCI5Ih8QnOuHEL2LChIIPRZI9JkxZyyCGvcOKJQ5g5c2XR/l13bc0775zAe++dyO67t8lghJWnb9+OTJx4Orfc0pf69cOP602btnDzzaPZb7/nGTduQYYjFKm5yupkXAhsAsYkOdwfqEeYJyeV/kA9d8+e+uEspE7G2WuXXZ5i2rSwGOOIEaeUSHqkpAUL1nDTTaN45pmviP+x1apVI267rR8XXbQ39evn7o+ar75azHnnDeXTT4uTmjp1jMsv35c//ak/TZqok7rUWkk715VnAogGwIBSjpd2DMJIKxFJIi+vc1GCM3LkXCU4Saxfv5n77vuMv/zlU9auLV63qV69OlxySS9uvrkvrVtvk8EIq8cee7Rl9OhTefDBSdx440jWrSugsNC5777PeOON73jiiYEcdljXTIcpUmOUVYPzTGXcxN3ProzrSHKqwclezz33NWeeGVYzOfLIbrz33kkZjqjmcHf+9a9vue66j/nhhxIDOfnZz3bk7rsHsMsurTMUXWZ9//0KLrzwfd5/v+Rw+LPP3oN77hlAq1aNMhSZSEYkrcEpcy0qqfmU4GSv779fwY47PgmEpQOWLbuUevXUNW7cuAVceeUwxowpOXx+jz3acO+9AzjiiG6ZCawGcXeee+5rrrxyOMuXFw92bd++CQ89dBgnntgjg9GJVKsKzYMjIlWoW7cWdO7cDIDVqzcxefKiDEeUWXPnruaMM/5Lnz4vlkhu2rTZhn/843AmTTpDyU3EzDjzzD2YMuVsfvnL4mTmxx/XctJJQzjhhDdZsGBNBiMUySwlOCIZZGYJyzbUzoU3167dxG23jaFHj6d4/vnimXzr16/DNdf0Zvr0c7nool6q3Uqiffsm/Otfg3j99Z/ToUPx8hOvvz6dnj2f4amnvtRyD1Ir6aeFSIbV5gn/CgudF16Ywi67PM2tt45h/friofK/+MXOTJlyNnfdNYCWLdWnpCzHHx+e1/nn71W0b+XKjZx33v84/PBXmTFjReaCE8kAJTgiGRaf4IwcObfW/LU9Zsw8DjzwRU4//b/Mm1fclNKrVzuGDfs//vOfn7PTTq0yGGH2admyEY8/PpCPPvo/undvWbT/o49+YM89B3P33eMpKNByD1I7KMERybCePbdl223DMOclS9bzzTfLMhxR1Zo9eyWnnvo2/fv/k/Hjfyzav912jXnyySOZMOE0BgzYPoMRZr9DDtmeL744k2uv3Z86dUL/y/XrC7j22o/p2/dFvvhicYYjFKl6SnBEMiyxH06uNlOtXr2JG28cya67PsPLL39TtL9hw7r87nd9mD79PM49d0/q1tWPpcrQuHF97rzzYMaN+zV77922aP+ECQvZb7/nuemmUZo9W3KafpKI1ADxE/yNHJlbCU5hofPMM1/So8dT/OUvn5b4pfp//7cL33xzDn/5Sx7Nmmkm3qqw337tGT/+NP7ylzwaNgwzPRcUFHL77WPZZ5/nGD26dnZsl9ynBEekBsjVjsYffzyH3r2f55xz/sePP64t2t+793aMHHkKr7xyHN26tchghLVD/fqhlmzy5DM56KDi2sJvvllGXt4/ufTSD1i9elMpVxDJPkpwRGqAXr3a0bRpfQDmzFnN7NkryzijZps5cwUnnfQmAwa8wqRJxXP7dOzYlGefPZpPPz2Ngw7SshTVbZddWvPxx6fwyCOHF32/ucPDD3/O7rs/w3//OzPDEYpUHiU4IjVAvXp16Ncv+/vhrFy5keuu+5iePZ/htdemF+3fZpt63HxzX6ZNO4czzti9qOOrVL86dYzf/KYXU6aczbHH7li0f86c1Rx77H847bR3WLJkXQYjFKkcSnBEaohsbqbasqWQxx6bzM47P8ldd41n06YtRcd+/euefPvtOdx2m1a8rkm6dGnOW2/9gpdeOpY2bYoXK33xxan07PkM//zn1FozZYFUvfXrN/P22zO44IKhfPzxnGq5Z3lWExeRapCtMxp/+OFsrrxyGF9+uaTE/gMP7MD99x9Knz4dMhSZlMXMOPXUnhxxRFeuuGIYL744FQjTFfzqV+/w4otT+cc/DqdLl+YZjlSy0aJFa3n77ZkMGTKDoUNnFU3kWa+ecfDBXar8/lpsMwdosc3csGFDAS1aPFhU+/Hjj79hu+2alHFW5kybtoxrrvmYt96aUWJ/ly7NuPPOgzn55F0wU1NUNnn33ZlceOH7zJlTvHp7s2YNuOOOfC68cG81LUqp3J1vvlnGkCHfMWTIDD75ZD7JUoxOnZoyZ86FlfnzQauJ5yolOLkjL++fjBoVam/+/e9BNXJF6OXLN/DHP37CQw9NKjErbpMm9bnhhgO4+urebLNN/QxGKFtj9epN/O53I3jkkc9L/HLKy+vME08MZJddWmcuOKlxCgoKGT16XlFS8913K1KW7dmzNYMG7cSgQd3p27djlSc4aqISqUHy8zsXJTgjRsytUQnO5s1beOyxydxyyxiWLdtQ4thZZ+3O7bfn0bFj0wxFJ5WlWbMGPPTQ4Zx6ak/OO+9/RTNrjxw5l733fpabb+7LtdfuT/36dTMcqWTKqlUb+d//ZjFkyAzeeWcmy5dvSFquTh3joIM6MWhQdwYN2omdd67epVdUg5MDVIOTO95773uOPvo1APbZpx0TJ56R4YiC9977nquuGsbUqSWXkcjL68x99w1gv/3aZygyqUobNhTw5z+P5Y47xpWordt777Y89dSR+nevRebMWcVbb83gzTdnMGzYD2zenHxNs6ZN63PUUTswaFB3jjlmx6JlaKqYmqhylRKc3LFq1UZatXqIwkLHDJYvv4wWLRpmLJ4pU5Zw9dXDee+9WSX277BDC+6662BOOGFn9bOpBb74YjHnnvseEyYsLNpXp45x9dW9ufXWfjRurCbJXOPuTJq0qKjpKX4+q0SdOzeLamm6M2BAFxo2rPbGISU4uUoJTm7p3ft5Pvss/CJ5550TOOaYHcs4o/ItWbKOW28dw6OPTmbLluKfEc2aNeDGG/tw+eX70aiRWrhrk4KCQv7+98/4wx9GF42GAejevSVPPDGQQw7RAqnZbuPGAoYNm1OU1MybtyZl2X32acegQd35+c93olevdpn+Q0d9cESyQV5e56IEZ+TIudWa4GzatIWHH57EH//4CStWbCzabwbnnbcXf/pT/xo9skuqTr16dbj66v05/vidueCCoXz00Q8AzJixgkMP/Rfnn78Xd96ZT8uWjTIcqaRjyZJ1/Pe/3zNkyHf873+zWLNmc9Jy9evX4dBDt2fQoO4cd1z3rJg6QDU4OUA1OLnl9denc8IJbwLQr19HRo/+VZXf0915++2ZXH31cKZPX17i2KGHbs+99w5g773bVXkckh3cnaef/oqrrx7OypXFiXCHDk145JHDOf74nTMXnJRp+vTlRbU0o0bNo7AweR7QunUjjj12RwYN6s7Agd1o3jxzzeVlUBNVrlKCk1sWL15Hu3aPAOGvppUrL6vSYddffLGYq64axocf/lBi/047teSeewZw3HHdM139LDXUggVruPTSD/nPf6aX2H/SST148MHDaN9etX01wZYthYwdu6AoqYmNjEume/eW/PznoempX79O1KuXFQseKMHJVUpwcs9uuz1dNGJp2LD/Y8CAyu/fsGjRWv7wh9E8+eSXJf6Ca9GiIbfc0pdLLtmHBg00FFjK9tpr07jkkg9YuLB4DatWrRpx770DOPPM3ZUgZ8CaNZt4//3ZDBnyHW+/PZMlS9YnLWcGfft2LBrKveuurbPx30t9cESyRV5e56IEZ+TIeZWa4GzcWMDf/z6RP/95LKtXbyraX7euceGFe3Pbbf1o06Zxpd1Pct+JJ/bg0EO355prhvP0018BYULIs89+j5demspjjx3BDju0zGyQtcD8+Wt4++0ZvPnmd3z44Q9s3LglabnGjesxcGA3Bg3qzrHH7ki7drlZ06YanBygGpzc8+KLUzjttP8CcPjhXXn//V9u9TXdnf/8ZzrXXfcxM2euLHFs4MBu3HvvAHbfvc1W30dqtw8+mM0FFwzl+++Lv8caN67H7bfncdll+1C3blY0eWQFd+fLL5cUNT2NH/9jyrLt2zcpGsp96KHb59ps49nVRGVmJwEHA72AvYFmwIvufloFrtUZ+CNwFLAtsAB4A7jN3ZcnlO0EnAAcA/QEOgBrgInAP9z9P0muPwAYVkoId7j7DUnOqwv8Fjgb2BlYD4wF/uzuY8r7+ZTg5J4fflhF166PA+GXw4oVl23VzLETJy7kyiuH/WSV8l13bc099wzg6KN3yMZqaamh1q7dxM03j+b++yeWaP7s06cDTz45kD32aJvB6LLbpk1bGDFiblFSM3v2qpRl99yzTdHSCL17t8/ltcSyLsH5nJDYrAHmArtSgQTHzLoDY4B2wJvAN8ABwCHAt0B/d18aV/5vwPXA98DHwI9AV0LS0xC4z92vSrjHAEKC8zEwPEkYo9z9g4RzDPgXcFIUx1tAa+BkoBFworu/WZ7PqAQnN3Xr9njRD69PP/01BxyQ/qrcCxas4cYbRzF48Fcl1hVq3boRt93Wjwsv3FtT7kuVGTduAeee+z+++qp4pfn69evw+9/34Xe/65OJCeGy0vLlG3j33TCU+913v2fVqk1Jy9WrV4eDD+7MoEE7cdxxO9amZsGs64NzJSGx+Y5Qk1NaDUlpHiEkN7919wdjO83s3ugetwMXxZUfBwxw94/jL2JmPQm1K1ea2Yvu/lmSew1391vLGdcphORmDHCYu2+I7vMoMAp4wsw+cvfVpVxDclh+fmeef34KENalSifBWb9+M/fe+xl//eunrF1bPK9FvXp1uOSSXtx8c19at66WKdSlFjvggA589tnp3HHHOP7857Fs2rSFzZsLue22T3j11Wk89dSRHHhgx0yHWSPNnLmCt96awZAhMxgxYm6JpTLitWjRkGOO2YFBg3biqKO6aR6iODW2BideXA1JWjU4Ue3Nd8AsoLu7F8Yda0ZoqjKgnbuvLcf1HgfOB65x93uSxHdbeRMcMxsB5AGHuvuwhGPPAacD57j7M2VdSzU4uemJJ77ggguGAjBoUHfefPMXZZ7j7rzyyrdcf/3H/PBDydz4Zz/bkbvvHqDVoCUjpkxZwvnnD2XMmPlF+8zgssv25fbbD6Jp0wYZjC7zCgud8eN/LGp6iq/1StStW3N+/vOdGDRoJ/LyOqkWNgtrcCrDIdF2aHxyA+Duq81sNDAQOBD4sBzXi/0pXJDi+E5mdinQnNC0NdLdpycWMrNGQD9gHTAyyXXeJSQ4hwJlJjiSm/LzOxd9PXJkmIyrtDb0ceMWcOWVw0r8AgHYY4823HvvAI44oltVhSpSpt12a8PIkafyyCOTuOGGkaxduxl3eOCBibz55nc8/vhABg7slukwq9W6dZv58MMfGDLkO956a0aJYfaJDjigfVF/mj32aKM+c+WQ6wnOLtF2Worj0wkJTg/KSHDMrDlwIuDA0BTFfh294s97DTg/oTNzd6AuMNPdkyVLsaSoR2kxSW7r0aMV7do1ZtGidSxfvoEpU5Yk7Zw5d+5qfve7kbzwwpQS+9u02YY///kgzj13z2yZrEtyXJ06xqWX7stxx3XnooveL1rEdfbsVRx55L8544zduPfeQ6prBeqMWLhwLW+/PZMhQ77j/fdnl1jXK16jRvU4/PDtGTRoJ372sx3p0KFpNUea/XI9wWkRbVemOB7b37K0i0Qdgp8EtgMecfepCUUWAzcA7xCawxoBvYG/EJKi9maWH1eLtNVxmdkFwAUA22+vRe5ykZmRl9eJ114L+e6IEXNLJDhr127irrvGc+ed40v8kKxfvw5XXLEfN954YEZXIhdJpWvXFvz3vyfy4otTufzyj1i2bAMAzz03hffem8WDDx7KL3+5S07UUrg7U6cuZciQ0J9m7Nj5pOoZ0rbtNhx3XJhw7/DDt6dJk9rdbLe1cj3BqSz3AL8kNCddlXjQ3b8Gvo7btQZ4z8zGAJ8D/YHjCKO4KoW7Pw48DqEPTmVdV2qWvLzORQnOyJHzuPjifSgsdF58cQq/+93In6z2+4tf7Mydd+az006tMhGuSLmZGaedthsDB3bl8suH8fLL3wCwaNE6Tj75bV58cSqPPHI4nTo1y3Ck6SsoKGTUqLlFSc2MGStSlu3Zs3VR01OfPh00T1AlyvUEJ1YT0iLF8dj+FakuYGZ3EkZbjQCOdfeNqcomcvdVZvYScCOQT3GCs9VxSe0Q3w9nxIi5jB49jyuvHPaTCb169WrHffcNqJIlHUSqUrt2TfjnP3/Gr37Vk9/85v2ipH3IkBkMHz6Hu+46mPPO26vGz+GyatVG3nvve4YMmcF///s9y5dvSFquTp1QMxuGcndn5531x0hVyfUE59tom6ovS2zJ26R9dMzsPuAKwgipn7l76h5gqS2OtvFzYc8AtgA7mlm9JP1wSo1Lao+99mpL8+YNWLVqE/Pnr+Ggg/5Z4vh22zXm9tvzOOus3fWXn2S1447rTn5+Z264YQSPPjoZgFWrNnHhhe/z0ktTeeKJI2tcMvDDD6uKhnIPG/YDmzcnH8rdtGl9jj46DOU++ugdcrqPUU2S6wlObPj1QDOrk2SYeH/CSKax8SdFfW4eAi4G3gd+7u7JVyor24HRdmZsh7tviJqv8qJX4hw/R0fbjyp4T8kRdevWoX//Trz77vcl9jdsWJerr+7NDTf0oVkztdNLbmjRoiH/+McRnHrqrpx33lCmTw9jMz7+eC577fUst93Wj6uu6p2xTvPuzsSJC4uanj7/fFHKsl26NCtawPLggztrUsMMyIknbmb1CSOTNrv7jNh+d59hZkMJI6UuAR6MO+02Qq3KY/Fz4ETJzePAeYTh2ifEJuEr5f693f0nE9GY2WmEmYk3EWYtjvcPQnLzZzOLn+hv/+icxcBr5fj4kuMOPXT7EgnO//3fLtxxRz7duqVq4RTJbvn5XZg8+Qz++MdPuOuu8WzZ4mzYUMD114/glVe+5amnjqRXr3bVEsuGDQUMG/YDQ4bM4K23Zvyk31u8fffdrmi9p1692uVEJ+lsVmMn+jOz44Hjo7ftgSMJtSCxeWOWuPs1UdluhKUVZrt7t4TrJC7VMBXoQ5gjZxrQL2GphluAWwnrQt1PSE4Sfe7ub8SdM4swN84EwuzLjYD9CUtCFBCGiQ9OiCt+qYZvCEs1bIuWapAEa9Zs4rzz/sf69QVce+3+HHRQ57JPEskRkyYt5LzzhjJx4sKifXXrGtdeuz8339y3ShaNXLJkHe+8M5MhQ2bwv//NKjEbeLwGDepy6KFdioZyd+nSvNJjkXLJurWobgVuKaVIUTJTWoITHe/CTxfbfJ3ki20OBs4sI7xn3f2suHOuBw4nrJfVhvCw5xE6Jt/v7pNTfMZ6wGXAOcBOwAbgE7TYpohIkYKCQu69dwK33DKGDRuKuyz26NGKJ54YSH5+l62+x7Rpy4qankaPnldikdB4rVs34thjd+TnP9+JgQO7qYm4ZsiuBEfKTwmOiNQG06cv5/zz/8fHH88tsf+ii/bmjjvyad68/PM+bdlSyCefzC9Kar79dlnKsjvt1DJaGqE7/fp10sSZNY8SnFylBEdEaovCQufJJ7/g2ms/LrGqdufOzfjHPw7nZz/rnvLcNWs2MXToLIYMmcE778xkyZLkY0fMoF+/TkX9aXbZpbX609RsSnBylRIcEalt5s1bzcUXf8CQITNK7D/llF35+98PoV27JkXlYksjfPjhD2zcuCXp9Ro3rseRR+7AoEHdOeaYHYrOl6ygBCdXKcERkdrI3Xn11W+57LKPWLSoeJqy1q0bceaZuzNy5FwmTFiY8vwOHZpESyN059BDt6+SDstSLZTg5ColOCJSmy1dup6rrhrGc89NKbPsXnu1LWp62m+/9jV+hmQpFyU4uUoJjogI/O9/33Phhe8ze/aqon316tVhwIAuDBrUneOO6675o3KTEpxcpQRHRCRYs2YTd989njlzVnPEEd04+ugdaNGi/KOrJCspwclVSnBERKQWS5rgaDC/iIiI5BwlOCIiIpJzlOCIiIhIzlGCIyIiIjlHCY6IiIjkHCU4IiIiknOU4IiIiEjOUYIjIiIiOUcJjoiIiOQcJTgiIiKSc5TgiIiISM5RgiMiIiI5RwmOiIiI5BwlOCIiIpJzlOCIiIhIzlGCIyIiIjlHCY6IiIjkHCU4IiIiknOU4IiIiEjOMXfPdAyylcxsMTC7Ei/ZBlhSidfLdnoeJel5lKTnUZKeR0l6HiVVxfNY4u5HJe5UgiM/YWYT3L13puOoKfQ8StLzKEnPoyQ9j5L0PEqqzuehJioRERHJOUpwREREJOcowZFkHs90ADWMnkdJeh4l6XmUpOdRkp5HSdX2PNQHR0RERHKOanBEREQk5yjBERERkZyjBEdERERyjhIcAcDMOpvZ02Y238w2mtksM7vfzFplOraqYmZ3mNmHZjbHzNab2TIzm2Rmt5jZtinO6Wdm/43KrjezL8zsCjOrW93xVxUzO8zMXjezH6Pvhflm9j8zOyZJ2Zx9Hhacb2afmtkaM1trZhPM7CIzS/qz08x+ZmbDzWxldM6nZnZmdcdeUWZ2kpk9aGYjzWyVmbmZvZCi7M5mdr2ZfRT9H9pkZgvN7E0zO6SM+5xpZuOiZ7QyemY/q5pPVXFpPo9u0fFUr5dLuU/OPY+ofEMzuyT6bEuizzfVzB4ws66lnFcpz0OdjAUz6w6MAdoBbwLfAAcAhwDfAv3dfWnmIqwaZrYJmAhMARYBTYADgd7AfOBAd58TV/7nwGvABuAVYBlwHLAL8G93/2W1foAqYGZ3AtcCc4F3CTOOtgX2Az5w9+viyub08zCzF4FfEb43hgDrgCOAnsDz7n5GQvlLgQeBpYTnsQk4CegM3OPu11Rf9BVjZp8DewNrCN8DuwIvuvtpScq+DJxM+P8zivDvvwswCKgLXO7uDyQ5727g6uj6/wYaAKcArYHL3P2hSv9gFZTm8+gGfA9MBt5Icrmv3P3fSc7L1edRDxgO9Cf8TvkA2AjsD+QDK4F+7j4l4bzKex7urlctfwH/Azz65onff2+0/9FMx1hFn7tRiv23R5/7kbh9zQm/6DYCveOvQUgOHTgl059pK5/H+dHnGAw0SHK8fm15HsAvos8wE2gTt78B8FZ07IS4/d0Iid5SoFvc/lbAd1H5vpn+XOX43IcAOwMGDIjifiFF2bOAfZLsP5iQ3G0EOiQc6xdd8zugVcLzWxo9w26V9Xmq+Xl0i/3/SeP6ufw8fhkd/wCok3DstujY01X5PNREVctFtTcDgVnAwwmHbwHWAqebWZNqDq3KufuGFIf+FW13jtt3EqEm42V3n5BwjZuit7+p9CCriZk1JCR2PwAXuPumxDLuvjnubU4/D0KCA6HmpWjdnOi5/CF6e2lc+XOAhsBD7j4rrvxy4C/R24uqLNpK4u7D3H26R79Vyig72N0nJdn/MeEv9waEX1jxYs/g9ujZxM6ZRfj50xA4u2LRV750nkcF5fLz2DHavuPuhQnH3oy2bRP2V+rzUIIjsbbyoYnfhO6+GhgNNCY03dQWx0XbL+L2HRpt30tSfgSh+aJflChkoyMIP2z+AxSa2bFR/4rLzaxvkvK5/jzaR9uZSY7F9uWZWYPo69Kex7sJZWqDWDJckLC/NjynjmZ2oZn9PtruVUrZXH4eX0fbo5P0WYv1p/kgYX+lPo965S0oOWuXaDstxfHphBqeHsCH1RJRNTOza4CmQAtC/5uDCMnN3+KKpXxO7l5gZt8DuxP+aplapQFXjf2j7QZgErBH/EEzGwGc5O6Lo125/jxitTY7JDkW+8u0XvT1N5T+PBaY2Vqgs5k1dvd1lR1sTRJ1Hj2MkOSOiNvfBOgErHH3BUlOnR5te1R5kFXriOhVxMyGA2e6+w9x+3L9ebxD+IPpBOBLM/uA0HS5H+Fn7IPEtRpUxfNQDY60iLYrUxyP7W9Z9aFkzDWE5rgrCP/x3gMGxv0yh9x/Tu2i7bWENvA8oBmwFzCU0Cnw1bjyuf483om2V5lZ69hOM6tP6D8QExtlWN7n0SLF8ZwQ1di9SGhKuDW+mYHc/55ZB/yJ8Au8VfQ6GBhG6K/yYUJTf04/j6gZ6yTC/5ddgN8SftYeQkh8X3L3+Bq+Sn8eSnCk1nP39u5uhGaJEwh/lU8ys30zG1m1iv0sKAAGufsod1/j7l8S+qPMBQ5O0VyVi14mdL7vDkwxs8fM7O/A54TkL/aXeGLfglrLwtQAzxNGzbwC3J3ZiKqXuy9y95vdfaK7r4heIwg14J8COwHnZTbK6mNmjQjfB1cDlwAdCEnMMUBXYEQ0ErPKKMGRsv6yjO1fUfWhZJa7L3T31wk/kLYFnos7nOvPaUW0nRTfSRYgalL5X/T2gGib08/D3bcQ+mLdACwGzoxe0wkdZ1dHRRdF2/I+j1R/nWa1KLl5gTBy5l/AaUk6oub090wqUS3Fk9Hb/LhDuf48biB8P9zo7o+5+4/uvsrd3yXU7NQH/h5XvtKfhxIc+TbapmrXjI0kStVHJ+e4+2zC3B67m1mbaHfK5xTN97ADofYjWafUbBD7fCtSHI81NWyTUD5Xnwfuvtnd73D3Pd29kbu3dPfjCSMOdwaWuPv3UfHSnkcHwhxLc3Ox/03UbPdPwlwlLwG/Smh6AMDd1wLzgKbRM0mUyz9rYs3dRU1UteB5xDoSD0s84O6TCT9Tulo0qWpVPA8lOBL75huY2NPdzJoRqpvXAWOrO7AM6xhtt0Tbj6LtUUnK5hNGmo1x941VHVgV+ZDQ92a3JCMeoLjTcewXeq4/j9KcQhgC/c+4faU9j6MTyuSMaBTZq4S/1J8DTo9qv1Kplc+J4lGoiQl/Lj+P2AjKxKHgsb5azaK38VNSVO7zSGeSH71y80UtnOiP8Jd2iyT761A80d/ouP3NCX+F5eTEdtFneTP6HFcm7B9I6GuyPPbMasnzaJ5kX6/ocy8DOsbt34EcmOgv4bMOoPSJ3BoSOmM7oQmmTjmumVUT26X5PPZN9gwII8o2ROf2q0XP4xGKJ/prmHDsr9GxcVX5PLRUgyRbqmEq0IfQ230a4T9lTi3VYGZXEP6TjSLUSiwFtiOMetgR+BE4zOOmETez4wlTh28gdEJdRpiWfpdo//95Fv+HMrPOhO+DLoQanUmEX9zHU5ywvBZX/nhy+3l8CqwHviL0uekJHBvtO87DhHbx5S8DHiC7l2o4nvDvDaHT/ZGEWoeR0b4lsc9hZs8QZjNeQvEvs0TD3X14wj3uAa6i5FT8JxP6vdW0pQmOp/zPYzihGWUM4bNBGIUYm7flD+7+5yT3yNXn0YlQ89+Z0Kz7HuH/Tn9CX771hJ+xnyTco/KeR6azQL1qxovwS+0ZYAHhB/Ns4H7isuhcehGaXB4ijIpZQugvshIYD9wKtE5xXn/gv4TajPXAl8CVQN1Mf6ZKei5tCfNTzI6+D5YArwMH1LbnQRgy/xmhX9LG6Af5w0DnUs45DviYkBCtjb6fzsz0Z0njM99KSFRSvWbFlR1eRlknDBVPdp+zomezNnpWHwM/y/Tn38rncS7wNuGX+Zroe+YHQrKbV8Z9cu55ROXbEkbTTSX8IRT73fIMsGtVPw/V4IiIiEjOUSdjERERyTlKcERERCTnKMERERGRnKMER0RERHKOEhwRERHJOUpwREREJOcowREREZGcowRHpBqZmUevbpmOpbzMbKCZfWhmK8ysMIr/rEzHVdOZ2YDoWc3KdCzpMrNdzazAzD4uu7Rkipl1NbPNZjY+07HUREpwJOuZ2fFxicP7mY4nl5hZHvAuYbr5poR1mBYSZi0u69xucf8u8a/NZrbQzN43s/Oi1ccrO+5bo1fLyr52dP2zouv3qorr1wB/AeoCf0o8YGbDk/ybbjKzxWb2jZn9y8yuMrP21R927eLus4EXgN5mdlKm46lpNJOxZD0ze53i9VEKge3dfV7mIkrNzGL/4XZw91mZjKU8zOxVwnpK/wLOcvcyE5u4c7tRvPr4copXDW5M8UrCENYDO9Ld1211wMX3rtLnHK07dDBwtrsPTlHmAMIK2/Pc/bDKjqGqmFkfwhpCn7r7gUmODyd89g2E5U0g/LHcnOIVpCEsf/IkcI27r63KmGszM9sZ+AaYDuzupa/mXquoBkeympm1ISyAuBZ4ifA9fXpGg8otu0fb59NJbpI4wd3bR6/mQEfCuk4ABxHWuMkp7j7O3XfNpuQmclW0fbyMcq/E/Zu2c/dGhAVrTyAsrFgPuAgYY2bNqy7c2s3dpwMjCIvcHpPhcGoUJTiS7U4F6gNDgMeifWdmLpycs020XVOZF3X3Be5+KRBrUlRSWgOY2baE2tBNwH/SPd/dF7n76+5+NHAOYQHGvYAnKjNO+Yl/RttzMxpFDaMER7JdLJl5ERhJWL1316h5IKmo74Sb2eDo/Zlm9qmZrTazVWY2zMyOKO2mZrabmb1iZovMbH3U9+A2M2uUeP10mFlTM/u9mY03s5VmtsHMppvZA2bWJd3rxV23YdQv4tPouuvN7FszuzdZX4lY3wqgW7RrWFx/i+EVjSOJodG2vZm1ThH7CWb2XtTHY6OZzTWzF81s3yRlB8c1TwF8n9BXZHBc2YZm9ksze87MJpvZkuh5z46uv1+S658VXf/gaNczCdefFVe2zE7GZnaImf3HzH6M+rH8aGavm9mhpZxT1FHdzLY3syeiZ7LRzL43s7u3osbk10AD4H13X1HBawDg7s8A90Rvf2lmeyUrtzXf83H/d9ea2bLo/+7PomOzouc0IOGcov+fZlbHzC41s3EWOtG7JfSrMrPjzOzNuH+jRWb2lpkdWUZsDaJrj4xi2xh9bz1tZj1LOe/nZvZfC/3UNkfnfmtm/zSzk1Oc9hqhef5YM2v3/+2dabAdRRWAv0PMUpAYkISXgMYgaqmAgiUqGkIsWQvLBRQQJMSFKIh7tASxjIiAuwgEwQoES4m4rwioGEM0KlQECyICJQExJoQQkohgFo4/zmmm37zpuXfuuy8v76W/qqm+d/p0T89Mz8zp7tOn68q1QzHYy6/nLW+dbtjwiQIPAyN934W+79KadHNdZgFmI6CYvcB6/63AVuC4RPrDMCPbILse+J//XgpcEPKvSBvSTK2IeyGwIpLZjPWchP+PAK/u4DpNBJZF+TwBbCjl+8pSmlW+bY1kwr4ftnncqdExZiRkPhrJTCzF7QRcHcVvwWx54nt0einNRV7GILMmKvcq4KJI9nWR3JN+jvF93QycUsr/BM9nU3Tv4/xviWRnuMyKxLmfVzr+Og/DvgsS6UL8G4C1/nuDlzfE3YI/Ew3rys89/Vk1MotS9btCdg+KZ6PP+fSnzmO9QnFdiK/fB6J8Z5TSzfX9VwM/rqhbB7jcSMyAV6Ntfen/5xJlmwzcVipf/Mw9jg3bltN9tpT/hlKdXFVzre90mROa3vfhug16AfKWt0434PP+QM+L9u3v+9YCoxLpwgtunb883gPs7HF7A7/z+JXA00ppJ2AKlQJ/Avbz/SOBk4CN0YtyQcWxKxUcYDxmkKuYQe+LgREe9xysh0qxj+iuDa/TL6OPxVuifF8G/DXKd0JF2sqPRJvHnRqdb2V6bIhKgY0VcR+n+PifA4zz/Xv5NQofjuntXueSzAxMITok3H/fPwX4SvQhmlKRdpHHz2qRf6WCA5wYlfHicO2B3YGvRXFvqzm3dcBvojo4GhsWesLjz2h4v8TriAJH1MiFc+9TvxPyf3D5Jd2q88Dbo+twPjDe9++BNVo2YXZ5dQrORr9Wp1M8/3sAT/ffoQ7cgz03u/j+cZ4mKCxvLeU/Evizx/0aOJiiATY5yvcxYJ/S8xIaFOcTPY9YI+U4YH7NdQ6NgUuaPqvDdRv0AuQtb51s2BTWlf5ATyvFhY92qgcmvOAUOLkifk+KVuf0Utynff/q8kvX44+P8l5QEZ9ScEJr/pqacw6KypwG1+mQ6JhHVsT3UHzUzq2IX1H1kWjz2FOjY88oxU3GPuwh/rJS/FiK1nJVy38ENiSpwOJ2r3PD8s/3PD5VEbeIDhUcTJG4x+MWJtJe4/H3ATslzu0OYHRF2nBdb2p4vs+L8p5UIxfOvU/9Tshf7vL/6kad9+sXFKMrEul+UVP35kZxs2uuxZPAQ8CzEjJBSb2jtP9doV6S6EUDvk5JGaF4d/ytw/r6YU9/Syfph+OWbXAyQ5XDsY/k/cDvS3Hf9vDUFnk8gH1IeqGqK7EWGMB+pehjPbxCK2wUVPW7wD9aHLeKUNYv1ciEstbaB5UIvjFuVdUbypGquhp72YK9YAeKYGeySkQ2YMrpmR63DDi7JH84Nu14E9ZT1wu1qbDBR8shVXZEXeBnHr66y/keADzXf5+XkPm0h1OBlD3Zl1X1fxX7f+xhue62YnL0++GGaetY52HZxqrTOv9SCtuwPnXD+Vwb5VoLXJmIm4kpUteq6j8TMt/HGkL7ikh87cJ5XaSqmxNpwzsqPq8NHo4XkZ1rS15NuGeTa6V2ILruYCuT2UbM8nChevMlYiFmB3O0iExU1TWJPG6tSBsIfnR2CztEZDTwIv+7pKZsS7Au9rZwQ8pn+t/rSkayMaM8bGJsHAxxf1sjcxNwFvB8EdlFB8ZnyW6J/fOxoZRNpf2h3Ler6jqqWYx16Y9w+euaFsoNm98LHI1Nsx3v+cXs2TTfFoRzW6Oqd1YJqOrfReRf2HDcSzG/NGVS3mv71N02meDhf1R1S8O0jehnnT/Qw1Wqem8i3R8xe56RNcW4teY8X+XhqSLylpo8Qv7PAv4t5rQyKKSXi8il1cmeqmPxef0J602dDCz1tL9S1ftqjh8TnpMJtVI7EFnByQw5RGQ8ZmAJ1T0wD4jIzcB0zC7mokRWG2sO84SH8QtyN4qZh/+uSbuyJq6KuMXVzgyIJq27iR7WOT580EPBXo4DoeC8RlUXAYhID3AU1nJ/B/ZiL08jblluVX1CRB7GhtkmpuRSiMiLMOWuJ9q9kcKocxR2z3dpmncL2rknYPdlL9Lnlqq/oe42fb8HJ31lZbO/BEXrkWhff+p8+IAnn0FV3SQia4G6nr1UwweK8o2jt1PKVuV7BoVStnsb6YIbBlR1nYicghk2vxh3eyEiq7DZhleqat3SGeG+jxKRnVT1yTaOP6zJQ1SZocgJwBj//Vfp6zZeMeUGhoZPnPg53E1VpcU2tYNjjGktsm1Q1dWqejWF9+lLylNzIway3Fdhys0yTOEap6pPV9UeVZ2EGZaCKX4DwXZzT5yggIwXkW6e8/4exkO326LOt6LO428o34faKJsE5b10Xge2kzY+qKpeh010mI0ZXq/ElLSZwCIRqXO+GBTJR7NyY2QFJzMUaaK0HCgi+7cWa4t1mOEh1I9zNx0DXx39ntIwbStCK7Uu3zBUoHTX9qIWVV2CtVZHYTNLYlqWW0TGULSS61rjVWmnYEMJW4HXq+oNqlp2ZtjTN2VXCGVtNdQY7kujc+sH4d6PoL1ei5a4T5bgT+jmKKo/db6lrYmIjKK9HpQUoXxNy7aWQnHq6FlW1fWq+g1VPUFV98LcYYQeztNE5JhE0qDgbLNneHsnKziZIYXYuithfPwA7KFObcFItCu9OG7Qudz/TqsRPaRhvvdRvFCP7qBodSzz8NCaVnlwKnf3ANnf1BH8fswQkcOi/aHczxORvRJpp1MMwywrxQWbjtQ5P6U8aHrdssMS+6FQdDvp6Qhl3UUSDilF5PnY8FQsP9DcQ3Fee3cpz49iCqwSDSf3s87/xcNJIrJPQuYV1NvftGKph0c1SeRGxbf63648y6q6XFVnU9hhHZoQnerhXd047nAgKziZocZMD29X1dtV9dHUBnzPZU8WkbLhaKf8yMPT3BaoFyJyHA0MjCMWeDin5oOOGLs2yPf7Hu5LYbcU59eD+QEC6xLfpqjq37FlNsB83QRuxGaVjMQ+kr3w+/lJ/3uzqq4qiYQZKbsmDh0Wieyp8vzqvX4n1RS9Vf513AYE49jy7LHAXA9XUMzoG1BUdQM29RzMR1K/EJFZwEf873dU9Y6SyAIPm9b5v2CzJwHmJJJ9rFFh+/JNTCl7oYi8u05QRMrG3As8nCUiL2k3rfc61RHWghudiD/Iw7oJEDsUWcHJDBm8ByKsWdTOOjk/w2ZSTAJq3ao34GJsqKoH+KWI7Otle5qInIjZdTzaQb4XYjYKE7DFCY8XkacMEMVc8s/GWvNvbDdTVb0ZW/gQ4EoReXNQ9sSWIrgR6+1aTdoYe6D5goeHisg0AO9JOt/3v19EPiEiYwH8Y7gQ60ULTgDLhNlJMxPK7d8wI14BrhWR53reI0XkWMwBYd36WyH/Y6sU3Tp85l4o8xtE5GKxNaAQkd1F5GvYGmsA52xje4rwcTyoViqBiEwQkTeKyHXYsyCYQje7QryjOu/XI7gIeI+IfEZ8aQoRmeh2KkcCHa9Or6rLKYZN54nIBSISev0QkXEicoSIfIuiIRWYj/W2jAFuEpHTJFo6Q0QmicjJIvI7zONy4HQRuUFEToqnnYvIriJyNuZXCaCPuwd/N4ahwMWdnPOwpNuOdfKWt4HagNdQOOjat80017v8tdG+ubRwVIa1whSYWxF3JIW3WMUUmvB/CcVSDZdXpE06oMN8oyyPZLZg4+n/jfYpcGrD6zYRa/WG9I/Td6mGgxNpVzAAjv4qZH/vcjdE+0bQd6mGRyjc8W8l4a2X3p5uH8da/CuAL0Yyb6LwHKt+TYKDx/uBt1HhqM/TviCS3YzNiFpB5K2XZks1bPVzi8vTaqmGPnWofN07uGfTo/OXhMyi6LqGJSoeovczodhsrHlEXqK7VecxxenKRN14EvOxdL/HHVxKO5c2HBV6/ZtXKsd67HmPl9T4bUXaPbB3QXx/19J7GQolciIJfLAU9x96L01S+U7xtNMoHENW3rcdccs9OJmhRLCluVsT/kMq+IGHr284tJNEzWHey7Dhn7VYl/F9wKeA11JM/Xy0Yb73Yj4+zsD81qzD/LJswbwzXwEcgxnmNsl3DeYufg5mH7AZs4u4B/gqpiwuTWawbQgO244QkYPAnPmp6qmYs8Ibses5FpsevBB4uarOq8pMbaHH07DhnS2YQe+ziXyEqOqPMPujX2FTrkdiH8UvYvfhQRKo6l2Yk7brsY/eJM//mak0FXmcg9WXn2Af9bFYffopcJiqntVuXt1CVRdj9WIKha1bijFYT2YPNlT3GHA39lx8GPMAfIaqJntSOq3zal/1d2JuBm7BlE3BlK9jVPUSzFEkdNajGurfGZjy8C2sboz2834Au09nUjjTjNM+hNnKnIz5Z1pDYbh9FzYEdjzWixW4Bquz12I9jJsp6vtPMWP41HDZiR5e5dcmg2t6mUyme7gPnmnA21V1wSAXJ5NphIjMwYYNL1XVM1vJb4+48fG9WC/SOO3rSHLY4M4FH8RmjT1H056XdzhyD04m00VE5GAK25DfDHJxMplOuAwbdpoVbIOGIMHIePFwVm6cU7BetPlZuelNVnAymYaIyGwROVtE9okMdseKyEzg5y723fyyyQxF1Ay8z8U8OH9okIuTRESucqP53aN9e4vIPAqj5rp1roY8IrIT8HHMHurcQS7OdkdeqiGTac4U4BOYD5etIrIes0EIDYbbgPcNSskyme7wDWzIo24m2WBzOL4mnYg8hvWaxg4Kz1PV6yvSDSf2xOzR7lRbJDgTkW1wMpmGiMh+2CydQzGj0mdgBpbLMQPLr6vq4+kcMplMfxGRt2K+nQ7Ehmh2xox5lwLzVPWmQSxeZjsgKziZTCaTyWSGHdkGJ5PJZDKZzLAjKziZTCaTyWSGHVnByWQymUwmM+zICk4mk8lkMplhR1ZwMplMJpPJDDv+D3nISW7kP5cWAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ]