forked from SnPM-toolbox/SnPM-devel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
snpm_STcalc.m
218 lines (176 loc) · 7.38 KB
/
snpm_STcalc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
function STCS = snpm_STcalc(varargin)
% Utility function for spatial statistics
%
% FORMAT STCS = snpm_STcalc('init',nPerm)
% Top-level initialization
%
% FORMAT STCS = snpm_STcalc('update',STCS,ST,XYZ,isPos,perm,pU_ST_ut,DF)
% STCS - Data structure
% ST - Suprathreshold statistic values (1 x N)
% XYZ - Voxel locations of corresponding (3 x N)
% isPos - 1 for positive; 2 for negative
% perm - Permutation No.
% ST_Ut - Cluster-defining threshold
% DF - Degrees of freedom, used for t-2-z transformation
%
% FORMAT STCS = snpm_STcalc('double', STCS)
% if bhPerms, STCS needs to be doubled.
%
% For internal use only
%
% FORMAT STCS = snpm_STcalc('initK',STCS,C,isPos,perm)
% Initialization for permutation K
%
%_______________________________________________________________________
% Copyright (C) 2013 The University of Warwick
% Id: snpm_STcalc.m SnPM13 2013/10/12
% Thomas Nichols, Jun Ding, Hui Zhang, Darren Gitelman
switch (lower(varargin{1}))
case 'init'
nPerm = varargin{2};
% Notation for documentation below
% i - Permutation number
% n - isPos; 1=Pos, 2=Neg
% k - cluster index
% For example, LMxT{i,n}{k} contains information about the i-th perm's
% kth cluster.
%
STCS = struct('nPerm',nPerm,... %-Number of permutations
...
'LMxT', [], ... %-Local maximum intensity;
... % LMxT{i,n}{k} is a vector of a
... % cluster's local maxima
...
'nLMxT',[], ... %-Number of local maximum;
... % nLMxT{i,n}(k) is a cluster's
... % number of local maxima
...
'K', [], ... %-Cluster sizes;
... % K{i,n}(k) is a clusters size
... %
'MxT', [], ... %-Cluster maximum intensity;
... % MxT{i,n}(k) the max within
... % a cluster
... %
'MxK', zeros(nPerm,2),...
... %-Maximum cluster size
... % MxK(i,n) is global max cluster
... % size for perm (i,n)
... %
'C', zeros(nPerm,2),...
... %-Number of clusters
... % C(i,n) is the number of
... % clusters in perm (i,n)
...
'AvgT', [], ... %-Mean intensity minus threshold
... % AvgT{i,n}(k) is a number of a
... % cluster's average - threshold
...
'CMssT', [], ... %-Cluster Mass (T_bar-thershold)*cluster size
... % CMssT(i,n) is a number of a
... % cluster's mass
...
'MxAvgT',zeros(nPerm,2), ...
... %-Maximum AvgT in perm(i,n)
...
'MxCMssT',[], ... %-Maximum cluster mass
... % MxCMssT(i,n) is max cluster mass of perm (i,n)
...
'AvgZ', [], ... %-Avg intensity for Gaussianized data
...
'CMssZ', [], ... %-Cluster Mass for Gaussianized data
...
'MxAvgZ',zeros(nPerm,2), ...
... %-Maximum AvgZ in perm(i,n)
...
'MxCMssZ',[] ... %-Maximum CMssZ
... % MxCMssZ(i,n) is max Gaussanized
... % cluster mass of perm (i,n)
);
return
case 'initk'
STCS = varargin{2};
C = varargin{3};
isPos = varargin{4};
perm = varargin{5};
STCS.LMxT{perm,isPos} = cell(C,1); %- local maximum intensity
STCS.nLMxT{perm,isPos} = zeros(C,1); %- number of local maximum intensity
STCS.K{perm,isPos} = zeros(C,1); %- Cluster size
STCS.MxT{perm,isPos} = zeros(C,1); %- Cluster maximum intensity;
STCS.AvgT{perm,isPos} = zeros(C,1); %- Mean intensity minus threshold
STCS.CMssT{perm,isPos} = zeros(C,1); %- Cluster Mass (T_bar-thershold)*cluster
%- size
STCS.AvgZ{perm,isPos} = zeros(C,1); %- Avg intensity for
%- Gaussianized data
STCS.CMssZ{perm, isPos} = zeros(C,1); %- Cluster mass for
%- Gaussianized data
return
case 'update'
STCS = varargin{2};
ST = varargin{3};
XYZ = varargin{4};
isPos = varargin{5};
perm = varargin{6};
ST_Ut = varargin{7};
df = varargin{8};
%- determine whether the user input is a p value or real threshold
if (ST_Ut < 1)
ST_Ut = spm_invTcdf(1-ST_Ut,df);
end
[N,Z,M,A] = spm_max(ST,XYZ);
% Enfore A to be a column vector. When XYZ locations are defined in a 1D
% space, spm_max returns A as a row vector instead of a column which
% makes find(A==i) fails later in the code below.
if size(A,2) > 1
A = A';
end
Aindex = spm_clusters(XYZ); %- cluster indexes
STCS = snpm_STcalc('initK',STCS,max(A),isPos,perm);
% Compute the stuff!
STCS.MxK(perm,isPos) = max(N);
STCS.C(perm,isPos) = max(A);
for i = unique(A)' %i=1:max(A) fix: A does not necessarily contain 1:max(A)
d = find(A==i);
Zd = Z(d);
STCS.K{perm,isPos}(i) = N(d(1));
STCS.MxT{perm,isPos}(i) = max(Zd);
STCS.LMxT{perm,isPos}{i} = Zd';
STCS.nLMxT{perm,isPos}(i) = numel(d);
indexd = find(Aindex==i); %- find the indexes for corresponding cluster
mST_ST_Ut = mean(ST(indexd))-ST_Ut;
STCS.AvgT{perm,isPos}(i) = mST_ST_Ut;
STCS.CMssT{perm,isPos}(i) = N(d(1))*(mST_ST_Ut);
%- for Gaussianized t image
mt2zST_t2zST_Ut = mean(spm_t2z(ST(indexd),df) - spm_t2z(ST_Ut,df));
STCS.AvgZ{perm,isPos}(i) = mt2zST_t2zST_Ut;
STCS.CMssZ{perm,isPos}(i) = N(d(1))*(mt2zST_t2zST_Ut);
end
if (~isempty(STCS.AvgT{perm,isPos}))
STCS.MxAvgT(perm,isPos) = max(STCS.AvgT{perm,isPos});
STCS.MxAvgZ(perm,isPos) = max(STCS.AvgZ{perm,isPos}); %- for Gaussianized t image
end
if (~isempty(STCS.CMssT{perm,isPos}))
STCS.MxCMssT(perm,isPos) = max(STCS.CMssT{perm,isPos});
STCS.MxCMssZ(perm,isPos) = max(STCS.CMssZ{perm,isPos}); %- for Gaussianized t image
end
return
case 'double'
STCS = varargin{2};
STCS.MxK=[STCS.MxK; flipud(fliplr(STCS.MxK))];
STCS.C=[STCS.C; flipud(fliplr(STCS.C))];
STCS.LMxT=[STCS.LMxT; flipud(fliplr(STCS.LMxT))];
STCS.nLMxT=[STCS.nLMxT; flipud(fliplr(STCS.nLMxT))];
STCS.K=[STCS.K; flipud(fliplr(STCS.K))];
STCS.MxT=[STCS.MxT; flipud(fliplr(STCS.MxT))];
STCS.AvgT = [STCS.AvgT;flipud(fliplr(STCS.AvgT))];
STCS.CMssT = [STCS.CMssT;flipud(fliplr(STCS.CMssT))];
STCS.MxAvgT = [STCS.MxAvgT; flipud(fliplr(STCS.MxAvgT))];
STCS.MxCMssT = [STCS.MxCMssT; flipud(fliplr(STCS.MxCMssT))];
%- for Gaussianized t image
STCS.AvgZ = [STCS.AvgZ;flipud(fliplr(STCS.AvgZ))];
STCS.CMssZ = [STCS.CMssZ;flipud(fliplr(STCS.CMssZ))];
STCS.MxAvgZ = [STCS.MxAvgZ;flipud(fliplr(STCS.MxAvgZ))];
STCS.MxCMssZ = [STCS.MxCMssZ;flipud(fliplr(STCS.MxCMssZ))];
STCS.nPermReal = STCS.nPerm*2;
return
end