Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ValueError: 'images' must have either 3 or 4 dimensions in step 10.Real Time Detections from your Webcam¶ #163

Open
zuhhh03 opened this issue Mar 7, 2024 · 0 comments

Comments

@zuhhh03
Copy link

zuhhh03 commented Mar 7, 2024

According to the error guide (ValueError: 'images' must have either 3 or 4 dimensions) for this error told to restart the notebook but still i'm getting this error and not able to run real time webcam detection . Please guide me through the process. Help me solve this issue

Screenshot 2024-03-07 153526
Screenshot 2024-03-07 153544
Screenshot 2024-03-07 153558
Screenshot 2024-03-07 153609
Screenshot 2024-03-07 153526
Screenshot 2024-03-07 153544
Screenshot 2024-03-07 153558
Screenshot 2024-03-07 153609


ValueError Traceback (most recent call last)
Cell In[80], line 11
7 image_np = np.array(frame)
10 input_tensor = tf.convert_to_tensor(np.expand_dims(image_np,0), dtype=tf.float32)
---> 11 detections = detect_fn(input_tensor)
13 num_detections = int(detections.pop('num_detections'))
14 detections = {key: value[0, :num_detections].numpy()
15 for key, value in detections.items()}

File Z:\OD\TFODCourse\od\lib\site-packages\tensorflow\python\util\traceback_utils.py:153, in filter_traceback..error_handler(*args, **kwargs)
151 except Exception as e:
152 filtered_tb = _process_traceback_frames(e.traceback)
--> 153 raise e.with_traceback(filtered_tb) from None
154 finally:
155 del filtered_tb

File ~\AppData\Local\Temp_autograph_generated_file5hb9upkq.py:10, in outer_factory..inner_factory..tf__detect_fn(image)
8 do_return = False
9 retval
= ag__.UndefinedReturnValue()
---> 10 (image, shapes) = ag__.converted_call(ag__.ld(detection_model).preprocess, (ag__.ld(image),), None, fscope)
11 prediction_dict = ag__.converted_call(ag__.ld(detection_model).predict, (ag__.ld(image), ag__.ld(shapes)), None, fscope)
12 detections = ag__.converted_call(ag__.ld(detection_model).postprocess, (ag__.ld(prediction_dict), ag__.ld(shapes)), None, fscope)

File ~\AppData\Local\Temp_autograph_generated_filele9x467a.py:35, in outer_factory..inner_factory..tf__preprocess(self, inputs)
33 try:
34 do_return = True
---> 35 retval
= ag__.converted_call(ag__.ld(shape_utils).resize_images_and_return_shapes, (ag__.ld(normalized_inputs), ag__.ld(self)._image_resizer_fn), None, fscope)
36 except:
37 do_return = False

File ~\AppData\Local\Temp_autograph_generated_filecxz4zk41.py:37, in outer_factory..inner_factory..tf__resize_images_and_return_shapes(inputs, image_resizer_fn)
35 pass
36 ag
_.if_stmt(ag__.ld(inputs).dtype is not ag__.ld(tf).float32, if_body, else_body, get_state, set_state, (), 0)
---> 37 outputs = ag__.converted_call(ag__.ld(static_or_dynamic_map_fn), (ag__.ld(image_resizer_fn),), dict(elems=ag__.ld(inputs), dtype=[ag__.ld(tf).float32, ag__.ld(tf).int32]), fscope)
38 resized_inputs = ag__.ld(outputs)[0]
39 true_image_shapes = ag__.ld(outputs)[1]

File ~\AppData\Local\Temp_autograph_generated_fileddmjfylv.py:186, in outer_factory..inner_factory..tf__static_or_dynamic_map_fn(fn, elems, dtype, parallel_iterations, back_prop)
184 elems_shape = ag
_.Undefined('elems_shape')
185 outputs = ag__.Undefined('outputs')
--> 186 ag__.if_stmt(ag__.converted_call(ag__.ld(isinstance), (ag__.ld(elems), ag__.ld(list)), None, fscope), if_body_5, else_body_5, get_state_7, set_state_7, ('do_return', 'outputs', 'retval_'), 3)
188 def get_state_12():
189 return (do_return, retval_)

File ~\AppData\Local\Temp_autograph_generated_fileddmjfylv.py:179, in outer_factory..inner_factory..tf__static_or_dynamic_map_fn..else_body_5()
177 outputs = [ag
_.converted_call(ag__.ld(fn), (ag__.ld(arg),), None, fscope) for arg in ag__.converted_call(ag__.ld(tf).unstack, (ag__.ld(elems),), None, fscope)]
178 outputs = ag__.Undefined('outputs')
--> 179 ag__.if_stmt(ag__.or_(lambda : ag__.not_(ag__.ld(elems_shape)), lambda : ag__.not_(ag__.ld(elems_shape)[0])), if_body_4, else_body_4, get_state_6, set_state_6, ('do_return', 'outputs', 'retval_'), 3)

File ~\AppData\Local\Temp_autograph_generated_fileddmjfylv.py:177, in outer_factory..inner_factory..tf__static_or_dynamic_map_fn..else_body_5..else_body_4()
175 def else_body_4():
176 nonlocal do_return, retval
, outputs
--> 177 outputs = [ag__.converted_call(ag__.ld(fn), (ag__.ld(arg),), None, fscope) for arg in ag__.converted_call(ag__.ld(tf).unstack, (ag__.ld(elems),), None, fscope)]

File ~\AppData\Local\Temp_autograph_generated_fileddmjfylv.py:177, in (.0)
175 def else_body_4():
176 nonlocal do_return, retval
, outputs
--> 177 outputs = [ag__.converted_call(ag__.ld(fn), (ag__.ld(arg),), None, fscope) for arg in ag__.converted_call(ag__.ld(tf).unstack, (ag__.ld(elems),), None, fscope)]

File ~\AppData\Local\Temp_autograph_generated_filebncszcul.py:34, in outer_factory..inner_factory..tf__resize_image(image, masks, new_height, new_width, method, align_corners)
32 retval
= ag__.UndefinedReturnValue()
33 with ag__.ld(tf).name_scope('ResizeImage', values=[ag__.ld(image), ag__.ld(new_height), ag__.ld(new_width), ag__.ld(method), ag__.ld(align_corners)]):
---> 34 new_image = ag__.converted_call(ag__.ld(tf).image.resize_images, (ag__.ld(image), ag__.converted_call(ag__.ld(tf).stack, ([ag__.ld(new_height), ag__.ld(new_width)],), None, fscope)), dict(method=ag__.ld(method), align_corners=ag__.ld(align_corners)), fscope)
35 image_shape = ag__.converted_call(ag__.ld(shape_utils).combined_static_and_dynamic_shape, (ag__.ld(image),), None, fscope)
36 result = [ag__.ld(new_image)]

ValueError: in user code:

File "C:\Users\Zubair\AppData\Local\Temp\ipykernel_7212\1654050223.py", line 11, in detect_fn  *
    image, shapes = detection_model.preprocess(image)
File "Z:\OD\TFODCourse\od\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\meta_architectures\ssd_meta_arch.py", line 485, in preprocess  *
    normalized_inputs, self._image_resizer_fn)
File "Z:\OD\TFODCourse\od\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\utils\shape_utils.py", line 492, in resize_images_and_return_shapes  *
    outputs = static_or_dynamic_map_fn(
File "Z:\OD\TFODCourse\od\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\utils\shape_utils.py", line 246, in static_or_dynamic_map_fn  *
    outputs = [fn(arg) for arg in tf.unstack(elems)]
File "Z:\OD\TFODCourse\od\lib\site-packages\object_detection-0.1-py3.10.egg\object_detection\core\preprocessor.py", line 3330, in resize_image  *
    new_image = tf.image.resize_images(

ValueError: 'images' must have either 3 or 4 dimensions.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant