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Abstract

The immutable Vector collection in the Scala library offers nearly constant-time ran-

dom access reads thanks to its underlying wide tree data structure. Furthermore, it

provides amortized constant time sequential read, update, append and prepend op-

erations by efficiently sharing parts of the tree between different immutable vectors. How-

ever, the performance of parallel operations is hindered by the overhead of re-combining

the results obtained from parallel workers.

Recent research has shown that parallel performance can be improved by relaxing the wide

tree invariants and thus improving the performance of the combine operation. Although

tree sharing is still used, sequential read, update, append and prepend are no longer

amortized constant time. This prevents the new approach from making its way into the

Scala Collections library.

The main insight of this thesis is that relaxed-invariant vector trees can be seen as

a composition of strict and irregular parts. Therefore earlier optimizations can still

be applied to strict subtrees, while irregular subtrees bring their own new optimization

opportunities. This allows our implementation to provide both amortized constant-time

sequential operations and efficient parallel execution at the same time.

Our implementation, which is fully compatible with Scala Collections, matches the se-

quential performance of standard vectors in most cases. At the same time benchmarks

show parallel operations execute up to 2.3X faster on 4 threads on a 4 core machine

thanks to the relaxed invariants allowing fast re-combination of results from different

parallel executions.
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Chapter 1

Introduction

1.1 Motivation

With the increase in multicore machines, programs tend to use more parallelism and

concurrency. In these contexts, managing mutable data structures introduces more

complexity. Thread safety can become a burden on the programmer and the machine.

A simpler approach is using immutable data structures, where elements can be accessed

directly without any risk of corruption due to race conditions.

Scala has a rich collection of immutable data structures as well as parallel versions that

divide their work transparently on thread pools. Where the vector is used as the default

general purpose parallel sequence. The immutable vector is based on balanced wide

trees, called RB-Trees, to allow effective constant time in practice on its key operations:

get element at index, update element at index, append, prepend and splitting the vec-

tor. But, one of the operations required for parallelism, the concatenation operation is

suboptimal.

To improve parallel performance, P. Bagwell and T. Rompf proposed a relaxed structure

for the vector [1]. The Relaxed Radix Balanced Tree allows the tree to be partially filled,

in turn allowing amortized constant-time concatenation. The drawback is in the loss

of some optimizations opportunities due to the relaxation, which leads to the loss of

amortized constant-time sequential operations due to the relaxation.
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Introduction 2

1.2 Objective

The main objective of this project was to implement1 version of the Scala immutable

Vector using RRB-Trees that could potentially replace the old one. As such the new

implementation is functionally equivalent to the old one.

To provide the same performance and amortized constant-time operations of RB-Tree,

we base the implementation on a composition of generic RRB-Tree operations with

more performant RB-Tree operations. Using the most efficient operations on any tree or

subtree where the stricter structure invariant holds. When possible, generalizations of

optimizations are devised in the RRB operations and in other cases new optimizations

opportunities are exploited. To enhance these benefits, the tree transformations favour

the creation of RB-Trees or subtrees.

1.3 Results

To show and analyze the trade-offs between the implementations extensive benchmarks

where realized on all core operations of the vectors. These compare the current vector

with an array of different RRB-Trees including: different tree branching sizes, different

implementation of concatenation algorithm and differently unbalanced RRB-Trees.

The implementation successfully integrated the the RRB-Trees with the radix based op-

timizations. As such the new Vector implementation has constant time for all operation

on which it had before and on the additional concatenation and insertion operations.

Form this it was possible to create a parallel vector that takes full advantage of the fork-

join pool parallelization. Benchmarks showed a 2.3X improvement on the data split and

combination on a pool with 4 threads.

The benchmarks showed that for almost all pre-existing constant time operations the

performance achieved was almost identical. The few cases that do not have the same

performance are still well bounded by constant time. It was shown that even with an

apparently less compact tree structure the change in memory footprint negligible.

1.4 Document Structure

In chapter 2 we discuss the data structures and operations: Section 2.1 describes the

current version of the vector structure and operations, section 2.2 discusses related data

1Implementation is located a https://github.com/nicolasstucki/scala-rrb-vector [2]

https://github.com/nicolasstucki/scala-rrb-vector


Introduction 3

structure that use the same trees in other ways (like the iterator of a vector), section

2.3 describes the RRB-Tree and how to relax the operations based on the non relaxed

versions.

In chapter 3 we describe the optimization done on the current version of the vector and

how they are affected by the relaxation. In section 3.1 we describe where most of the

processing time is spent and how it optimizations use this information. In section 3.2 we

describe the optimizations that are used to reduce the algorithmic complexities of some

operations. In section 3.3 we describe the implementation of the related structures and

optimizations on them.

In chapter 4 we discuss the performance of the implementation in practice. In section 4.1

we describe characteristics of the JVM and how to take advantage of them. In sections

4.2 and 4.3 we describe the benchmarks used to measure performance. In section 4.4 we

show the results of the benchmarks and analyze it.

In chapter 5 we present the testing methodology and in section 6 we review the related

work. We conclude in in section 7.
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Chapter 2

Immutable Vector Structure and Operations

An immutable vector is an representation for an indexed sequence1 of elements with

efficient random access and update2. It also provides operations that allow efficient

additions and removal of elements.

2.1 Radix Balanced Vectors

The current immutable Vector implementation[3] of the Scala Collections is a wrapper

around an immutable tree. The vector implements its methods based on a set of core

efficient operations on the trees.

2.1.1 Tree structure

The RB-Tree (Relaxed Balanced Tree) structure is a shallow and densely-filled tree

where elements are located only in the leafs and on the left side. The nodes in the tree

have a fixed size, whether they’re internal nodes, linking to subtrees, or leafs, containing

elements. Benchmarks have shown the optimal node size is 32, but as we will later see3,

the node size can be any power of 2, allowing efficient radix-based implementations (see

3.1.2). Figure 2.1 shows this structure for m children on each node.

The RB-Vector also keeps the height of the tree in the depth field. This height will

always be upper bounded by log32(size − 1) + 1 for nodes of 32 branches. Therefore

1Ordered sequence of elements where each one is identified by its index or position.
2Update in the scene of immutable data structures refers to the creation of a structure with an

element changed.
3Nodes of size 64 could also be consider, with some trade-offs.
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Immutable Vector Structure and Operations 5

0 1 … m-1

0 1 … m-1 0 1 … m-1

0 1 … m-1

0 1 … m-1

0 1 … m-1 0 1 … m-1 0 1 … m-1 0 1 … m-1

0 1 … m-1

0 1 … m-1 0 1 … m-1 0 1 … m-1

Figure 2.1: Radix Balanced Tree Structure

the tree is quite shallow and the complexity to traverse it is considered as effectively

constant when taking into account that the size will never be larger than the maximum

index representable with Int, which corresponds to a maximum depth of 7 levels4.

Yet, the tree may have numbers of elements that are not powers of 32. To allow this,

the RB-tree fills in the elements in the leafs from the left. The branches on the right

that do not contain any element in any of their leafs are not allocated (left as empty

references or truncated nodes). For example the tree that would hold 1056 elements

in figure 2.2 would have empty subtrees on the right of the nodes on the rightmost

branch. To prevent out-of-bounds access, the vector has an endIndex field that point

to that last index. With this it is possible to have efficient implementations of take

and append (see 2.1.2), as they make changes on this index rather that the structure

of the tree.

0 1 … 31

0 1 … 31 0 1 … 31

0 1 … 31

0 1 … 31

0 1 … 31 0 1 … 31

Figure 2.2: Radix Balanced Tree Structure with nodes of size 32 filled with 1056
elements.

Similarly, to have efficient implementation of drop and prepend operations (see 2.1.2),

the vector defines a startIndex field that points to the first element in the tree that is

actually used in the vector. In this case, although the leafs are empty on the left of the

first element, the nodes are still allocated with the full size. As such, the tree structure is

logically still full on the left but elements are never accessed if below the startIndex.

An element at some index in the vector will be at startIndex + index in the tree.

This allows the balanced radix structure to be maintained regardless of the missing

elements on the left. As such, the implementations for drop and prepend will take

advantage of the index to avoid restructuring the whole tree.

4Maximum depth of log32(231) + 1, which is 6.2.
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2.1.2 Operations

The immutable vector in the current Scala Collections is an indexed sequence, as such

it offers a large range of operations. Most of these operations are implemented using a

set of core operations that can be implemented efficiently on RB-Trees, those operations

are: apply, updated, append, prepend, drop and take.

The performances of most operations on RB-Trees have a computational complexity of

O(log32(n)), equivalent to the height of the tree. This is usually referred as effective

constant time because for 32 bit signed indices the height of the tree will bounded by

a small constant (see 2.1.1). This bound is reasonable to ensure that in practice the

operations behave like constant time operations.

In this section the operations will be presented on a high level5 and without optimization.

These reflect the base implementation that is used before adding optimizations, which, in

many cases lower the cost of the operations (see Chapter 3). This makes the operations

in this section act as worst-case scenarios, when none of the optimizations apply and

thus the basic operations have to be performed.

For simplicity of code in this section we define:

type Node = Array[AnyRef]
val Node = Array

2.1.2.1 Apply

The apply operation returns the element located at the given index. This is the main

element access method and it is used in other methods such as head and last.

def apply(index: Int): A = {
def getElem(node: Node, depth: Int): A = {

val indexInNode = // compute index
if(depth == 1) node(indexInNode)
else getElem(node(indexInNode), depth-1)

}
getElem(vectorRoot, vectorDepth)

}

The base implementation of the apply operation requires a simple traversal from the

root to the leaf containing the element, the path taken is defined by the index of the

element and extracted using some efficient bitwise operations (see section 3.1.2). With

this traversal of the tree, the complexity of the apply operation is O(log32(n)).

5Ignoring some pieces of code like casts, return types, type covariance, among others.
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2.1.2.2 Updated

This is the primary operation for transforming the vector. However, since the vector is

an immutable data structure, instead of modifying the element in place, this operation

returns a new immutable vector and does not modify the existing one. This is the reason

it is called updated instead of the more common update.

The updated operation has to recreate the whole branch from the root to the element

being updated. The update of the leaf creates a fresh copy of the leaf with the updated

element. Then the parent of the leaf also need to create a new node with the updated

reference to the new leaf, and so on up to the root.

def updated(index: Int, elem: A) = {
def updatedNode(node: Node, depth: Int) = {

val indexInNode = // compute index
val newNode = copy(node)
if(depth == 1) {

newNode(indexInNode) = elem
} else {

newNode(indexInNode) = updatedNode(node(indexInNode), depth-1)
}
newNode

}
new Vector(updatedNode(vectorRoot, vectorDepth), ...)

}

Therefore the complexity of this operation is O(log32(n)), for the traversal and creation

of each node in the branch. For example, if some leaf has all it’s elements updated from

left to right, the branch will be copied as many times as there are updates. We will later

explain how this can be optimized by allowing transient states that avoid re-creating

the path to the root tree node with each update (see 3.2.2).

2.1.2.3 Append

The appended operation (or :+) adds an element to the end of the vector. Its imple-

mentation has two cases, depending on the current state of the RB-Tree: If the last leaf

is not full the element is inserted at the end of it and all nodes of the last branch are

copied. If the leaf is full we must find the lowest node in the last branch where there is

sill room left for a new branch. Then a new branch is appended to it, down to the new

leaf with the element being appended.

In both cases the new Vector object will have the end index increased by one. When

the root is full, the depth of the vector will also increase by one.
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def :+(elem: A): Vector[A] = {
def appended(node: Node, depth: Int): Node = {

if (depth == 1)
copyLeafAndAppend(node, elem)

else if (!isTreeFull(node.last, depth-1))
copyAndUpdateLast(node, appended(node.last, depth-1))

else
copyBranchAndAppend(node, newBranch(depth-1))

}
def createNewBranch(depth: Int): Node = {

if (depth == 1) Node(elem)
else Node(newBranch(depth-1))

}
if(!isTreeFull(root, depth)))

new Vector(appended(root, depth), depth, ...)
else

new Vector(Node(root, newBranch(depth)), depth+1, ...)
}

In the code above, the isTreeFull operation computes the answer using efficient

bitwise operations on the end index of the vector.

Due to the update of all nodes in the last branch, the complexity of this operation is

O(log32(n)). Like the updated operation, append can be optimized by keeping transient

states of the immutable vector (see Section 3.2.2).

2.1.2.4 Prepend

The key to be able to prepend elements to the tree is the startIndex that the vector

keeps in its fields. Without this it would be impossible to prepend an element to the

vector without a full copy of the vector to rebalance the RB-Tree. The operation can

be split into to cases depending on the value of the start index.

The first case is to prepend an element on a vector that start at index 0. If the root is

full, create a new root on top with the old root as branch at index 1. If there is still

space in the root, shift branches in the root by one to the right. In both subcases, create

a new branch containing nodes of size 32, but with only the last branch assigned. Put

the element in the last position of this newly created branch and set the start index of

the vector to that index in the tree.

The second case is to prepend an element on a vector that has a non zero start index.

To do so, we follow the branch of the start index minus one from the root of the tree. If

we reaches the a leaf, prepend the element to that leaf. If we encounters an inexistent

branch, create it by putting the element in its rightmost position and leaving the rest

empty. In both subcases update the parent nodes up to the root.
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The new Vector object will have an updated start index and end index, to account for

the changes in the structure of the tree. It may also have to increase the depth of the

vector if the start index was previously zero.

def +:(elem: A): Vector[A] = {
def prepended(node: Node, depth: Int) = {

val indexInNode = // compute index
if (depth == 1)

copyAndUpdate(node, indexInNode, elem)
else

copyAndUpdate(node, indexInNode,
prepended(node(indexInNode), depth-1))

}
def newBranch(depth: Int): Node = {

val newNode = Node.ofDim(32)
newNode(31) = if (depth == 1) elem else newBranch(depth-1)
newNode

}
if (startIndex==0) {

new Vector(Node(newBranch(depth), root), depth+1, ...)
} else {

new Vector(prepended(root, depth), depth, ...)
}

}

Since the algorithm traverses and creates new nodes from the root to a leaf, the complex-

ity of the prepend operation is O(log32(n)). Like the updated and appended operations,

prepended can be optimized by keeping transient states of the immutable vector (see

Section 3.2.2).

2.1.2.5 Concatenation

Given that elements in an RB-Tree are densely packed, implementations for concate-

nation and insert will need to rebalance elements to make them again densely packed.

In the case of concatenation there are three options to join the two vectors: append all

elements of the RHS vector to the LHS vector, prepend all elements from the LHS vector

to the RHS vector or simply reconstruct a new vector using a builder. The append and

prepend options are used when on of the vectors is small enough in relation to the other

one. When vectors become large, the best option is building a new vector, since this

avoids creating one instance of the vector each time an element is added.

The computational complexity of the concatenation operation on RB-Trees for vectors

lengths n1 and n2 is O(n1 + n2) in general. In the special case where n1 or n2 is

small enough the complexity becomes O(min(n1, n2) ∗ log32(n1 + n2)), the complexity

of repeatedly appending or prepending an element.
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2.1.2.6 Splits

The core operations to remove elements in a vector are the take and drop methods.

They are used to implement may other operations like splitAt, tail, init, ...

Take and drop have a similar implementation. The first step is traversing the tree the

leaf where the cut will be done. Then the branch is copied and cleared on one side. The

tree may become shallower during this operation, in which case some of the nodes on

the top will not be copied and just dropped. Finally, the startIndex and endIndex

are adjusted according to the changes on the tree.

The computational complexity of any split operation is O(log32(n)) due to the traversal

and copy of nodes on the branch where the cut index is located. O(log32(n)) for the

traversal of the branch and then O(log32(m)) for the creation of the new branch, where

m is the size of the new vector (with 0 ≤ m ≤ n).
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2.2 Related Structures

2.2.1 Vector Builder

A vector builder is a special wrapper for a RB-Tree that has an efficient append oper-

ation. It encapsulates mutable trees during the building of the vector and then freezes

them on the creation of the result. Details of this structures are discussed in section

3.3.1.

2.2.2 Vector Iterator

A vector iterator is a structure that implements an efficient traversal of the vector. In

the case of vectors, it is achieved by direct inorder traversal on trees. Details of this

structures are discussed in section 3.3.2.

2.2.3 Parallel Vectors

The parallel vector (or ParVector [4]) is a wrapper around the normal Vector object

that uses the parallel collections API instead of the normal collections API. With this,

operations on collections get executed transparently on fork-join thread pools rather

that on the main thread. In order to execute in parallel, the parallel vector needs to be

split into chunks, that are processed in parallel and later combined. This is where the

Splitter and Combiner objects come into play.

The use of a vector combiner produces additional overhead, since requires an concate-

nation of vector. To reduce this excessive overhead on concatenation the current imple-

mentation does it lazily by buffering vectors. Once all the vectors are computed a new

one is build by traversing all the vectors in the buffer.

Splitter (Iterator) To divide the work into tasks for the thread pool, a splitter

is used to iterate over all elements of the collection. Splitters are a special kind of

iterator that can be split at any time into some partition of the remaining elements. In

the case of sequences the splitter should retain the original order. The most common

implementation consists in dividing the remaining elements into two half.

The current implementation of the immutable parallel vector uses the common division

into 2 parts of same size. The drop and take operations are used divide the vector for

the two new splitters.
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Combiner (Builder) Combiners are used to merge the results from different tasks

(in methods like map, filter, collect, ...) into the new collection. Combiners are a special

kind of builder that is able to merge to partial results efficiently. When it’s impossible

to implement efficient combination operation, usually a lazy combiner is used. The lazy

combiner keeps all the sub-combiners in an array buffer and only when the end result

is needed they are combined by building a new vector with all elements in the vectors

contained in the buffer. This alternative comes with a drawback on loss of parallelism

of the vector building at the end of the combination as this is done in a single thread.

The current implementation of the immutable parallel vector uses the lazy approach

because of its inefficient concatenation operation. One of the consequences of this is

that the parallel operations will always be bounded by this sequential building of a

vector, which is usually slower than the sequential version.
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2.3 Relaxed Radix Balanced Vectors

The implementation for RRB vectors proposed consists in replacing the wrapped RB-

Tree by an RRB-Tree and augmenting the operations accordingly while trying to main-

tain the performance of RB-Tree operations. The structure of the RRB-Trees doesn’t

ensure by itself that the tree height is bounded, this is something that the implementa-

tion of the operations must ensure.

2.3.1 Relaxed Tree structure

An RRB-Tree is a generalization of an RB-Tree where there is an additional kind of

node. This new node is an unbalanced node that does not require the it’s children to

be full. Leaf nodes are never considered as unbalanced. For efficiency these nodes will

have metadata on the sizes of it’s children.

In an unbalanced node, the sizes are kept in an additional array structure and attached

at the end of the array that contains the children. The sizes array has the same length

as the number of children of the node as is shown in figure 2.3. This kind of nodes get

truncated rather that keep empty branches as all this metadata can now be encoded

into the sizes.

0 1 … m-1 m

0 1 … m-1 0 1 … m-1

0 1 … m-1 m0 1 … m-1

0 1 … m-1 m

0 1 … m-1

0 1 … m-1

0 1 … m-1

0 1 … m-1

0 1 … m-1 0 1 … m-1

Figure 2.3: Radix Balanced Tree structure

In the RRB-Tree paper [1] the sizes are located in the front. They where moved to

favour the performance on radix indexing on balanced node rather than on unbalanced

nodes sizes. This is based on the assumption that most operation will be executed on

balanced nodes.

To have an homogeneous representation for unbalanced nodes and balanced node, the

balanced nodes arrays are extended with one extra empty position at the end. Therefore

all the nodes have the same structure and the node is balanced if and only if the last

position is empty6. The leafs do not need this additional data. Figure 2.4 shows an

example of a RRB-Tree that has a combination of balanced an unbalanced nodes.

6Empty position is just a null reference.
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…

0 1 … 31 32 33 … 62 990 990 … 1022

1023 1090

32 63 … 102395

10231024 … 1054 10551056 … 1086 108710881089

Figure 2.4: Concrete example of an RRB-Tree that contains 1090 elements.

As it is possible to represent trees that are not filled on the left, the startIndex is

removed from the Vector object and assumed to be always zero. The endIndex is

also not strictly necessary but is kept for performance of index bound checks.

2.3.2 Relaxing the Operations

For most operations the implementation is relaxed using the same technique. It con-

sist in using a generalized version of the code for RB-Trees that take into account the

unbalanced nodes that do not support radix operations. Mainly this consists in chang-

ing the way the indicesInNode are computed on unbalanced nodes and their clone

operations. This adds an abstraction layer for some of the operations (see figure 2.5).

To take advantage of radix based code when possible the operations will still call the

radix version if the node is balanced. This implies that from a balanced node down the

radix based code is executed. Only the unbalanced nodes will have loss in performance

due to generalization and therefore the code executed for a balanced RRB-Tree will tend

to be the same as the one for RB-Trees.

As the RRB-Tree structure does not ensure the bound on the height unless the tree is

completely balanced, the operation must ensure that tree respects the log32(n) height.

Fortunately there are only three operations that can unbalance a tree: the concate-

nated, prepend and drop operations. The operations that also modify the structure

of the tree like append and take do not add unbalanced nodes, but can affect the

existing ones.

RRBVectorIteratorRRBVector

RB Tree
RRB Tree

RRBVectorBuilderVectorIteratorVector

RB Tree

Vector Builder

Figure 2.5: Abstractions layers for original and relaxed RB trees.
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2.3.3 Core operations with minor changes

Apply The apply operation does not fundamentally change. The only difference is in

the way the index of the next branch of a node is computed. If the node is unbalanced

the sizes of the tree must be accessed (see section 3.1.2).

Updated For the updated the changes are simple because the structure of the RRB-

Tree will not be affected. The computation of the indexInNode will change to take

into account the possibility of unbalanced nodes while traversing down the tree. The

copy operation will need to copy the sizes of the node if the node is unbalanced. Because

the sizes are represented in an immutable array, this copy of sizes is in fact a reference

to the same object.

Append To append an element on an RRB-Tree it is only necessary to change the

copyBranchAndAppend, copyAndUpdateLast and createNewBranch helper func-

tions. The copyBranchAndAppend will additionally copy the sizes and append to it

a new size with value equal the previous last size plus one. The copyAndUpdateLast

will also copy the sizes of the branch and increase the last size by one. The createNew-

Branch will have to allocate one empty position at the end of the new non leaf nodes of

the branch. Note that any new branch created by append will be created as a balanced

subtree.

Take This operation needs to take into account the RRB tree traversal scheme to go

down to the index. The tree is cut in the same way the RB-Tree is cut with an additional

step. When cutting an unbalanced node the sizes of that node are cut at the same index

and the last size is adjusted to match the elements in the cut.

2.3.4 Concatenation

The concatenation algorithm used on RRB-Vectors is the one proposed in the RRB-Trees

paper [1]. From a high level, the algorithm merges the rightmost branch of the vector

on the LHS with the leftmost branch of the vector on the RHS. While merging the node,

there is a rebalancing that is effectuated on each of them to ensure the logarithmic bound

on the height of the vector. The RRB version of concatenation has a time complexity of

O(log32(n)), which is a clear improvement from the RB concatenation that was O(n).
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def concatenate(left: Vector[A], right: Vector[A]) = {
val newTree = mergedTrees(left.root, right.root)
val maxDepth = max(left.depth, right.depth)
if (newTree.hasSingleBranch)

new Vector(newTree.head, maxDepth)
else

new Vector(newTree, maxDepth+1)
}
def mergedTrees(left: Node, right: Node, depth: Int) {

if (depth==1) {
mergedLeafs(left, right)

} else {
val merged =

if (depth==2) mergedLeafs(left.last, right.first)
else mergedTrees(left.last, right.first, depth-1)

mergeRebalance(left.init, merged, right.tail)
}

}
def mergedLeafs(left: Node, right: Node} = {

// create a balanced new tree of height 2
// with all elements in the nodes

}

The concatenation operation starts at the bottom of the branches by merging the leafs

into a balanced tree of height 2 using mergedLeafs. Then, for each level on top of

it, the newly created merged subtree and the remaining branches on that level will be

merged and rebalanced into a new subtree. This new subtree always adds a new level to

the tree, even though it might be drop later on. New sizes of nodes are computed each

time a node is created based on sizes of children nodes. The rebalancing algorithm has

Figure 2.6: Concatenation example with nodes of size 4: Rebalancing level 0

two proposed variants. The first consists in completely rebalancing the nodes on the two

top levels of the subtree. The second also rebalances the top two level of the subtree but

it only rebalance the minimum amount of nodes that ensures the logarithmic bound.

The first one leaves the tree better balanced, while the second is faster. More detail on

the bounds and complexities can be bound on the RRB-Tree paper [1]. The following

snippet of code shows a high level implementation of the first variant.
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def mergeRebalance(left: Node, center: Node, right: Node) {
val merged = left ++ centre ++ right // join all branches
var newRoot = new ArrayBuilder
var newSubtree = new ArrayBuilder
var newNode = new ArrayBuilder
def checkSubtree() = {

if(newSubtree.length == 32) {
newRoot += computeSizes(newSubtree.result())
newSubtree.clear()

}
}
for (subtree <− merged; node <−subree) {

if(newNode.length == 32) {
checkSubtree()
newSubtree += computeSizes(newNode.result())
newNode.clear()

}
newNode += node

}
checkSubtree()
newSubtree += computeSizes(newNode.result())
computeSizes(newRoot.result)

}

Figures 2.6, 2.7, 2.8 and 2.9 show a concrete step by step (level by level) example of

the concatenation of two vectors. In the example, some of the subtrees where collapsed.

This is not only to make it fit, but also to expose only the nodes that are referenced

during the execution of the algorithm. Nodes with colours represent new nodes and

changes, to help track them from figure to figure.

Figure 2.7: Concatenation example with nodes of size 4: Rebalancing level 1

Figure 2.8: Concatenation example with nodes of size 4: Rebalancing level 2



Immutable Vector Structure and Operations 18

Figure 2.9: Concatenation example with nodes of size 4: Rebalancing level 3

The concatenation algorithm chosen as for the RRB-Vector is the one that is slower but

that rebalances better the trees. The reason behind this decision is that with better

balanced trees all other operations on the trees are more performant. In fact choosing

the least performant option does not need to be seen as a reduction in performance

because the improvement is in relation to the RB concatenation linear complexity. An

interesting consequence of the this choice, is that all vectors of size at most 10247 that

where created by concatenation will be completely balanced.

When using displays and transient states, concatenating a small vector the concatenation

algorithm is less performant that strait forward append or prepends on the other vector.

That case is identified by using bounds on their lengths. If one is big and the other is

small, a prependAll/appendAll variant is used. Those two operations are optimized

version of the append/prepend that do not create the intermediate Vector wrapper

object and some of the leaf arrays. When both vector are small enough the rebalance is

done directly with mergedLeafs.

InsertAt The operation insertAt is not currently defined on Vector because there

is no way to implement it efficiently. But with RRB-Trees it is possible to implement

this operation quite simply using splitAt, append and concatenate. This imple-

mentation has a time complexity of log32(n) that comes directly from the operations

used.

def insertAt(elem: A, n: Int): Vector[A] = {
val splitted = this.splitAt(n)
(splitted._1 :+ elem) ++ splitted._2

}

7The maximum size of a two level RRB-Tree.
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As this operation is new in the context of a vector and no real world use cases exist, this

simple implementation is used8.

2.3.5 Prepend and Drop

From a high level, the prepend and drop operations on RB-Trees and RRB-Trees are

quite similar. The difference is in the way the nodes are copied, updated and cut. In

the RRB operations, instead of using a startIndex, the nodes on the leftmost branch

can become unbalanced and hence represent a first branch that is not fully filled.

Most of the time, both these operation will create new unbalanced nodes, but only on

the left most branch. Calling several times combinations of these two will not contribute

in generating even more unbalanced branches. As such they are only responsible for the

creation of at most log32(n) unbalanced nodes on any vector.

Prepend Just like with the RB version, the first step is to traverse down the left most

part of the tree. Traversing the tree becomes trivial because now the first branch is

always on sub-index 0. As now there is a need for checking if there is still space in the

leftmost branch the prepend returns a result if it could prepend it on that subtree.

When prepending an element on a subtree, if the element was added the parent nodes

are updated with there corresponding sizes. If the element could not be prepended, then

we check if the root of the current subtree has still space for another branch. If there is

space a new branch is prepended on it, otherwise the prepend is delegated back to the

parent node.

def +:(elem: A): Vector[A] = {
def prepended(node: Node, depth: Int) = {

if (depth == 1) {
Some(copyAndPrepend(node, elem))

} else {
prepended(node(0), depth-1) match {

case Some(newChild) =>
Some(copyAndUpdate(node, 0, newChild)))

case None if canPrependBranchOn(node) =>
Some(copyAndPrepend(node, newBranch(depth-1)))

case _ => None
}

}
def newBranch(depth: Int): Node = {

val newNode = Node.ofDim(2)
newNode(0) = if (depth==1) elem else newBranch(depth-1)
newNode

}

8It would be possible to optimize for localized inserts on the same leaf using the same optimizations
that are used for updated, appended and prepended



Immutable Vector Structure and Operations 20

prepended(root, depth) match {
case Some(newRoot) => new Vector(newRoot, depth, ...)
case None =>

Vector(copyAndPrepend(root, newBranch(depth)),
depth+1, ...)

}
}

Sizes are updated by adding one to each size and in the case of copyAndPrepend

additionally prepend a 1. Nodes on new branches do not need sizes as they are balanced,

but they still need the empty slot.

This operation will generate unbalanced nodes, but will not unbalance the tree each

time the prepend operation is called. In fact it will only generate a new unbalanced

node when prepending a new branch on a balanced subtree. Then will start filling that

new branch up to the point where it becomes balanced.

Due to the update of all nodes in the first branch, the complexity of this operation is

O(log32(n)). Like the RB version, prepended can be optimized by keeping transient

states of the immutable vector 3.2.2).

Drop Like with the RB-Tree drop operation, the first step is to traverse down the

tree to the cut index. The difference is that when cutting the nodes, instead of clearing

the left side of the node the node is truncated and the sizes are adjusted. For each node

the adjustment is equal to the number of nodes that will be dropped in the left of the

subtree. This number is already part of the computation of the cut indices on each node.

The computational complexity of any split operation is O(log32(n)) due to the traversal

and copy of nodes on the branch where the cut index is located.

2.3.6 Related Structures

2.3.6.1 Vector Builder and Iterator

The relaxation of the vector builder is discussed in section 3.3.1 and the relaxation of

the vector iterator in section 3.3.2.

2.3.6.2 Parallel Vector

The main difference between the RB and RRB parallel vectors is in the implementation

of the combiner. This combiner is capable of combining in parallel and each combination

is done in O(log32(n)). The splitter also changed a bit to add an heuristic that helps on

the performance of the combination and will tend to recreate balanced trees.
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Splitter The splitter heuristic consists in creating partitions of the tree that contain a

number of elements equal to a multiple of a completely filled tree (i.e. a · 32b elements).

The splitter will always split into two new splitters that have a size that is as equivalent

as possible taking into account the first rule. To do so, the mid point of the splitter

remaining elements is identified, then shifted to the next multiple of a power of 32. This

way all nodes will be full and the subsequent concatenation rebalancing will be trivial.

As all nodes are full, there is no node that requires shifting elements and therefore new

node creation can be avoided in some cases.

Combiner The combiner is a trivial extension of the RRB-Vector builder. It wraps

an instance of the builder and for each operation of the Combiner that is defined in

Builder it delegates it to the builder. The combine operation concatenates the results

of the two builders into a new combiner. The advantages of this combiner are that the

combination is done in O(log32(n)) and that they can run in parallel on the thread pool.

I



Chapter 3

Optimizations

3.1 Where is time spent?

3.1.1 Arrays

All nodes of the trees are represented with immutable Array[AnyRef]1, as this is the

most compact representation for the structure and will help performance by the use of

JVM primitive operations (see 4.1). The leafs do not use specialized type arrays, as

the type information is lost in methods due to generic types2. One consequence is that

elements are already boxed when they arrive to the leafs and another one is the lack of

runtime type information3 that Arrays use upon creation in a generic context4.

Most of the memory used in the vector data structure will be composed of arrays. There

are three key operations used on these arrays: array creation, array update and array

access. The arrays are used as immutable arrays, as such the update operations are

only allowed when the array is initialized. This also implies that each time there is a

modification on some part of an array, a new array must be created and all the old

elements copied.

The size of the array will affect the performance of the vector. With larger blocks (the

arrays in the nodes) the access times will be reduced because the depth of the tree will

decrease. But, on the other hand, increasing the size of the block will slow down the

update operations, as there is the need to copy the entire array for a single update.

Benchmarks show that the sweet spot for performance is with blocks of size 325.

1Immutable arrays are just mutable arrays that do not get updated after initialization.
2Scala Collections [5] uses generic types sequences.
3A classTag implicit evidence.
4Limitations that could be circumvented by Miniboxing[6].
5Could also be 64, but the tradeoffs must be considered.

22
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3.1.2 Computing indices

Computing the indices in each node while traversing or modifying the vector is key in

performance. This performance is gained by using low level binary computations on the

indices in the case where the tree is balanced. And, using precomputed sizes in the case

where the balance is relaxed.

Radix Assuming that the tree is full, elements are fetched from the tree using radix

search on the index. As each node has a branching of 32, the index can be split bitwise in

blocks of 5 (25 = 32) and used to know the path that must be taken from the root down

to the element. The indices at each level L can be computed with (index >> (5·L))&31.

For example the index 526843 would be:

526843 = 00 00000
0

00000
0

10000
16

00010
2

01111
15

11011
27

def getSubIndex(indexInTree: Int, level: Int): Int =
(indexInTree >> (5*level)) & 31

This scheme can be generalized to any block size m where m = 2i for 0 < i ≤ 31. The

formula would be (index >> (m · L))&((1 << m) − 1). It is also possible to generalize

for other values of m using the modulo, division and power operations. In that case the

formula would become (index/(mL))%m. This last generalization is not used because

it reduces slightly the performance and it complicates other index manipulations.

0 … 16 … 31

0 … 27 … 31

0 … 31

0 1 2 … 31

0 … 15 … 31

Figure 3.1: Accessing element at index 526843 in a tree of depth 5. Empty nodes
represent collapses subtrees.
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Relaxing the Radix When the tree is relaxed it is not possible to know the sub-

indices directly from the index. That is why we keep the sizes array in the unbalanced

nodes. This array keeps the accumulated sizes to make the computation of sub-indices

as trivial as possible. The sub-index is the same as the first index in the sizes array

where index < sizes[subIndex]. The simplest way to find this sub-index is by a linearly

scanning the array.

def getSubIndex(sizes: Array[Int], indexInTree: Int): Int = {
var is = 0
while (sizes(is) <= indexInTree)

is += 1
is

}

For small arrays (like blocks of size 32) this will be faster than a binary search because

it takes advantage of the cache lines. If we would consider using bigger block sizes it

would be better to use a hybrid between binary and linear search.

To traverse the tree down to the leaf where the index is, the sub-indices are computed

from the sizes as long as the tree node is unbalanced. If the node is balanced, then the

more efficient radix based method is used from there to the leaf. To avoid the need of

accessing and scanning an additional array in each level.

3.1.3 Abstractions

When creating an implementation for a data structure it is always a good practice to

have simple abstractions to simplify the code. This makes the code easier to read an

reason about but it will complicate the execution of this code. In this section we’ll focus

on how the actual implementation optimizes out overheads that would be generated by

functions and generic code abstractions.

Functions When writing an algorithm we usually divide it into small self-contained

subroutines and we try to factor out the common ones. In practice this will add over-

head for function invocations each time a function is used and break the locality of the

code. To improve the performance we avoid as much as possible function call on simple

operations. The code also avoids the creation of any higher order function to avoid

additional object allocations. As such while loops are used rather than for loops.
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Generalization A common way to reduce the amount of code that needs to be written

when implementing common functionality is using generalization of code. But this

comes with a computational cost for cases where a second implementation that takes

into account the context of to simplify the operation. When considered beneficial the

code is specialized by hand on the current context6.

The base mechanisms to specialize are: specialization of a value, loops unrolling and

arithmetic simplifications. Value specialization consist in explicitly identifying the value

of some field and then using code specialized on that value. Loop unrolling (including

recursions) consist in writing explicitly the code for each loop instead of the loop. This

one is usually used on loops that are bounded by some value specialization. Once the first

two specialization are applied code can be simplified with arithmetic transformations.

Concretely, most of the value specialization is done on heights and indices on radix

operations. The height are a bounded small range of numbers and therefore can be

efficiently specialized with a match7 expression. On ranges of indices that are on trees

of the same size specialization is done using nested if/else expressions. It is also

possible to specialize of the first and last index, the first index (the 0 index) gains much

from specialization because of arithmetic cancelation of terms. As an example here is a

version of the radix apply.

def apply(index: Int): A = {
vectorDepth match {

case 1 =>
vectorRoot(indexInNode & 31)

case 2 =>
val node1 = vectorRoot((indexInNode>>5) & 31)
node1(indexInNode & 31)

case 3 =>
val node2 = vectorRoot((indexInNode>>10) & 31)
val node1 = node2((indexInNode>>5) & 31)
node1(indexInNode & 31)

case 4 =>
...

}
}

Where the vectorDepth is specialized, then the recursion is rolled and finally a >>

is removed on each branch of the match. Taking this one step further with the head

method that is usually implemented as apply(0), using the same specialization, re-

moving the need for any additional arithmetic operation, the code becomes:

6This is specialization on value.
7All match expressions used in this specialization get compiled to tableswitch bytecode instruc-

tion. In some cases it would be beneficial to have tableswitch with fallthrough, but the there is
currently no Scala construct that compiles to that.
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def head(): A = {
vectorDepth match {

case 1 => vectorRoot(0)
case 2 => vectorRoot(0)(0)
case 3 => vectorRoot(0)(0)(0)
...

}
}

In relaxed radix operations the loop unrolling is usually avoided because in those meth-

ods the amount of nodes traversed can’t be known in advance. But will invoke specialized

versions of the code as soon as it finds a node on which it is possible. For a perfectly

balanced RRB-Tree that node is to root, and hence the performance for such vectors is

similar to the one for an RB-Tree.
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3.2 Displays

As base for optimizations, the vector object keeps a set of fields to track one branch

of the tree. They are named with using the level number from 0 up to the maximum

possible level. In the case of blocks of size 32 the maximum level used is 58, they are

allocated by default and nulled if the tree is shallower. The highest non null display is

and replaces the root field. All displays bellow the root are never null. This implies that

the vector will always be focused on some branch.

display0

display2

display1

Figure 3.2: Displays

To know on which branch the vector is focused there is also a focus field with an index.

This index is the index of any element in the current display0. This index represents

the radix indexing scheme of node sub-indices described in 3.1.2.

To follow the simple implementations scheme of immutable objects in concurrent con-

texts, the focus is also immutable. Therefore each vector object will have a single focused

branch during its existence9. Each method that creates a new vector must decide which

focus to set.

3.2.1 As cache

One of the uses of the displays is as a cached branch. If the same leaf node is used in the

following operation, there is no need for vertical tree traversal which is key to amortize

operation to constant time. In the case another branch in needed, then it can be fetched

from the lowest common node of the two branches.

To know which is the level of the lowest common node in a vector of block size 2m

(for some consistent m), only the focus index and the index being fetched are needed.

The operation indexˆfocus will return a number that is bounded to the maximum

number of elements in a tree of that level. The actual level can be extracted with some

8As in practice, only the 30 bits of the index are used.
9The display focus may change during the initialization of the object as optimization of some methods
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if statements. This operation bounded by the same number of operations that will be

needed to traverse the tree back down through the new branch.

def getLowestCommonLevel(index: Int, focus: Int): Int = {
val xor = index ˆ focus
if (xor < 32 /*(1<<5)*/ ) 0
else if (xor < 1024 /*(1<<10)*/ ) 1
else if (xor < 32768 /*(1<<15)*/ ) 2
...
else 5

}

When deciding which will be the focused branch of a new vector two heuristics are used:

If there was an update operation on some branch where that operations could be used

again, that branch is used as focus. If the first one cant be applied, the display is set to

the first element as this helps key collection operations such as iterator.

3.2.2 For transient states

Transient states is the key optimization to get append, prepend and update to amortized

constant time. It consists in decoupling the tree by creating an equivalent tree that does

not contain the edges on the current focused branch. The information missing in the

edges of the tree is represented and can be reconstructed from the displays. In the

current version of the collections vector [3] this state is identified by the dirty flag10.

Figure 3.3: Transient Tree with current focus displays marked in white and striped
nulled edges.

Without transient states when some update is done on a leaf, all the branch must be

updated. On the other hand, if the state is transient, it is possible to update only the

subtree affected by the change. In the case of updates on the same leaf, only the leaf

must be updated. When appending or prepending, 31
32 operations must only update the

leaf, then 31
1024 need to update two levels of the tree and so on. These operations will

thus be amortized to constant (
∑∞

k=1
k∗31
32k

= 32
31 block updates per operation) time if

they are executed in succession.

10In the RRB Vector [2] implementation it was replaced by transient.
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There is a cost associated to the transformation from canonical to transient state and

back. This cost is equivalent to one update of the focused branch. The transient state

operations only start gaining performance on the canonical ones after 3 consecutive

operations. With 2 consecutive operations they are matched and with 1 there is a loss

of performance.

3.2.3 Relaxing the Displays

When relaxing the tree balance it is also necessary to relax the displays. This is mainly

due to the loss of a simple way to compute the lowest common node on unbalanced

trees. Computing the node requires now the additional sizes information located in each

unbalanced node. As such it is necessary to access the nodes to be able to compute

the lowest common node, and there is a loss in performance due to increased memory

accesses.

To still take advantage of efficient operations on balanced trees, the display is relaxed to

be focused on a branch of some balanced subtree11. To keep track of this subtree there are

three additional fields: focusStart that represents start index of the current focused

subtree, focusEnd that represents the end index of the subtree and focusDepth that

sets height of the focused subtree12. The operations that can take advantage of the

the efficient display operations will check if the index is in the subtree index range and

invoke the efficient operation. If not, it will invoke the relaxed version of the operation,

that starts from the root of the tree.

For example, the code for apply would become:

def apply(index: Int): A = {
if (focusStart <= index && index < focusEnd)

getElementFromDisplay(index - focusStart)
else if (0 <= index && index < endIndex)

getElementFromRoot(index)
else

throw new IndexOutOfBoundsException(index)
}

This apply method on the unbalanced subtrees of figure 3.4 would use the getElement-

FromDisplay to fetch elements in display0 directly from it and fetch elements from

nodes (1.1) and (1.2) starting from display1. The rest is fetched from the root using

getElementFromRoot.

11A fully balanced tree will be itself the balanced subtree, as such it will always use the more performant
operations.

12As an optimization, the focus field is split into the part corresponding to the subtree and the part
that represents the indices of the displays that are unbalanced.
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display0

(0)

(0.0) (0.1) (0.2) (1.1) (1.2)

display2

display1 (2)

(2.0) (2.1)

Figure 3.4: Relaxed Radix Balanced Tree with a focus on a balanced subtree rooted
of display1. Light grey boxes represent unbalanced nodes sizes.

3.2.4 Vector Canonicalization

Immutable Vector

Canonical Vector

Transient Vector

Creates new object in state Mutation of ‘this’ internal state No change in state

canonicalization

Figure 3.5: Objects states and effect of operations.

As stated in section 3.2.2 vectors have two representations: canonical and transient. The

transient state aims to improve performance of some operations by amortizing costs.

But, the transient state is not ideal for performance of other operations. For example

an apply operation on an unbalanced vector may lack the sizes information it requires

to access certain indices. And an iterator relies on a canonical tree for performance.

It is always possible to implement those operations on transient states, but they would

involve additional overhead on each call and duplication of code.

The solution is to convert the transient representation to a canonical one when an

operation that requires it is called on an instance of the immutable vector. The mutation

of the vector is not visible from the outside and only happens at most once (see figure

3.5). This transformation only affects the nodes that are on the display, it copies each

one (except the leaf) and links the trees. If the node is unbalanced, the size of the

subtree in focus is inserted. This transformation could be seen as a lazy initialization of

the current branch.



Optimizations 31

Immutable Vector

Canonical Vector

Transient Vector

appended
if depth > 1

apply
if element in 

focused subtree
apply

if element not in 
focused subtree

Creates new object in state Mutation of ‘this’ internal state No change in state

appended
if depth = 1

appended

apply

if not focused on last leaf

Figure 3.6: Transient state creation and canonicalization of vectors for append and
apply operations.

Vector objects can only be in transient state if they where created that way. For example,

the append/prepend operation will create a new object that is in transient state and

focused on the last/first branch. If the source object was not focusing the last branch,

then it is canonicalized (if needed) before change of branch operation. Vectors of depth

1 are special cases, they are always in canonical form and their operations are equivalent

to those in transient form.

Figure 3.6 shows the different states and the effects of the append and apply operations

on them. Figure 3.7 shows the same for all operations. Note that the mutation of

this object only happened from transient to canonical and that the only way to get to

transient is with the creation of a new vector object.
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Immutable Vector

Canonical Trees

Canonical Vector

Transient Vector

apply
if element in 

focused subtree

Creates new object in state Mutation of ‘this’ internal state No change in state

appended
if size < 32

appended
focused on last leaf

concatenated
take
drop

concatenated
take
drop

prepended
if size >= 32

focused on first leaf
prepended

focused on first leaf

apply

iterator
reverseIterator

Builder

result

Iterator
ReverseIterator

iterator
reverseIterator

prepended
if size < 32

updated
focused on updated leaf

updated
focused on updated leaf

if update index 
not focused leaf

if not focused 
on first leaf

if not focused
on last leaf

apply
if element not in 
focused subtree

appended
if size >= 32

focused on last leaf

Figure 3.7: Transient state creation and canonicalization of vectors for every opera-
tion.
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3.3 Related Structures

3.3.1 Builder

A vector builder is a special wrapper for a RB-Tree that has an efficient append oper-

ation. It is implemented using encapsulated mutable arrays during the building of the

vector and then frozen on the creation of the result. Any array that the builder can still

mutate is cloned and possibly truncated to generate the RB-tree of the vector.

The benefits of the mutable append operation of the builder over appended operation

of the vector are on the reduced amount of memory allocations needed in the process of

appending. There is no need to allocate a new Vector object each time an element is

appended. Even more important is that there is no need to create a new array in each

change on a node, nodes are allocated once and filled as needed.

Relaxing the Builder Most of the operations implemented in the collections frame-

work that use builder usually create the new collection by appending one element at

a time. To retain the performance of all existing operation that use builders the im-

plementation builder append does not change. Therefore the tree where elements are

appended is always perfectly balanced.

To add performance when concatenating a Vector to a builder a new field is added

to retain a vector that will be lazily concatenated to the result. This vector is the

accumulation acc of all elements (or all vectors) that where added before (and including)

the last concatenation and elements in the current tree been build. All elements added

after the last concatenation are added to the main the mutable tree of the builder.

3.3.2 Iterator

The default implementation for iterator in IndexedSeq is by iterating on the indices

and accessing elements with the apply method. This is not optimal because it requires

traversing the tree down from the root each time an element is accessed. The traversal

of the vector using this would have a computational complexity of O(n · log32(n)).

To improve performance of the iteration on vector a normal inorder tree traversal of the

underlying RB-Tree amortizes the computational complexity to O(n). The iterator can

use the display optimization to keep track of the current branch and move to the next
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branches efficiently using the radix index scheme. In this case the display is allowed to

mutate. The current implementation of vector is implemented this way13.

Relaxing the Iterator To keep the performance advantages of the tree traversal on

balanced RRB-trees, iteration is done the same on every balanced subtree. When the end

of a balanced subtree is reached the first element of the next balanced subtree is focused

and the traversal continues efficiently from there. If the tree is not too unbalanced the

traversal will tend to be O(n). But if the tree is extremely unbalanced it will tend

to fall back on O(n · log32(n)), where the additional log32(n) comes from the changes

of balanced subtrees. Even in this bad last case the performance is better than the

traversal by index because each leaf is a balanced subtree, on which efficient traversal is

used. The RRB-Vector implements both iterator and reverseIterator this way.

I

13The current reverseIterator is still using traversal by index.
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Performance in Practice

4.1 In practice: Running on JVM

In practice, Scala compiles to Java bytecode and executes on a JVM, where we take the

Java SE HotSpot as a reference. This imposes additional characteristics of performance

that can’t be evaluated on the algorithmic level alone.

The JVM use just in time (or JIT) compilation of code to take advantage of knowledge

about how the code is used at runtime. At first it runs on interpreter mode, it consists

of interpreting the bytecode and collecting statistics on the codes execution. Eventually

it will compile the code to make it faster using several optimizations and heuristics. The

code of the vectors tries to gain performance by aligning with those heuristics and hence

taking advantage of the JVM optimizations.

One of the components of the JVM that will be affected by vectors is the garbage collector

(or GC). The vector tends to create a large amount of Arrays during transformations,

of which many are only necessary for a short time. Those objects will use up memory

and possibly degrade performance of future allocations, until the next GC. Having all

these unused object will also contribute in an increase in the frequency of GC executions.

For that reason the code is optimized to avoid excessive creation of intermediary objects.

When running on some machine we have several memory cashes helping with perfor-

mance. The vector tries to align to the underlying cache model to improve performance.

The size of the arrays is chosen to take advantage of cache lines while they are copied

and traversed. This makes the behaviour of node copies look more as a constant time op-

eration. Further more when copying arrays the System.arraycopy primitive is used.

This way, the critical operation that is executed on each update will use the lowest level

35
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implementation available for the JVM. This could potentially go down to efficient host

machines code when compiled.

4.1.1 Cost of Abstraction and JIT Inline

One of the optimizations that the JVM provides is function call elimination (abstraction

elimination) based on a set of heuristics. This is equivalent to the functions optimization

in section 3.1.3 but done on another level of the pipeline. Critical parts of the code are

written with careful detail to match the heuristics of the JVM.

The optimization works as follows: the code is run in interpretation mode first while

keeping track of statistics on which parts of the code are executed and how many times.

When the code is eventually compiled, function calls that are deemed hot are inlined.

The heuristic favours inline when the function has less than 35 bytes.

We use this knowledge of the heuristic in two ways. The first is to avoid inlining

everything, if the function is small and there is no other optimization that can be done

if inlined manually, the code is kept as a function. The second is to inline the methods

of the vector API into the clients code. When implementing functions with less than 35

bytes, performance was tested and cross referenced with the VMs inlining diagnostic1.

The code was inspected using javap -c, which gives the sizes of the function and

helped identifying some optimization possibilities.

1The JVMs "-XX:+UnlockDiagnosticVMOptions -XX:+PrintInlining" flag was used to
track the inlining.
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4.2 Measuring performance

ScalaMeter framework[7] is used to measure performance of operations on different im-

plementations of vector. This framework was used to identify performance improvements

or regressions during the development process.

To have reproducible results with low error margins, ScalaMeter was configured on a

per benchmark basis2. Each test is run on 32 different JVM instances to average out

badly allocated VMs. On each JVM 32 measurements are taken, while using outlier

elimination to remove benchmark runs that where exceptionally different. This could

happen if one particular run has a garbage collection, JIT compilation of code or OS

executing something else. Before the benchmark runs the JVM is warmed up by running

some times the benchmark without taking measurements. During these first execution

the VM will be loading classes, taking some statistic on the code and then eventually

compiling it.

There are two main axis of performance comparisons. The first is between the RB-Vector

and a perfectly balanced RRB-Tree where the aim is to have an equivalent performance,

even if the RRB-Vectors have an inherent additional overhead. The second axis is the

one that shows the effects of unbalanced nodes on RRB-Tree. For this we compare

the same perfect balanced vector with one that is the result of one concatenation of

two vectors and with an extremely unbalanced vector. The later vector is generated by

concatenating random3 small vectors together. The amount of unbalanced nodes is in

part affected by the size of the vector. Other axes are discussed in the next section.

2The JVM -XX:+PrintCompilation flag vas used to help identifying the ideal configuration.
3Pseudo random generator where used to be able to reproduce the same ones each time.
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4.3 Implementation Generators

Until now, only one implementation of the RRB-Vector4 was mentioned, comparing it

against the RB-Vector. But in fact to compare performance on different characteristics

like block sizes and concatenation algorithm variant concrete implementations where

generated using Scala reflection. Other characteristics involve a complete structure as-

sertion while testing and benchmarks generation. For each combination of characteristics

there is a concrete artefact: class implementation, tests and benchmarks.

Code is generated by combining AST using Quasiquotes with some domain specific

optimizations. The optimizations are the same that where applied manually on the main

implementation of the RRB-Vector. The resulting code is equivalent, except that it lacks

formatting. The name of the artefact is used to identify the different characteristics5.

The block sizes used where 32, 64, 128 and 256. The main aim is to show the differences

in performances of the operations and identify sizes for which performance degrades due

to loss of cache locality. This is the only number in the name of the artefact.

Both versions of the RRB-Vector concatenation algorithm are used to generate vector

implementations. This is done mostly to compare the performances of other operation

on vector that got unbalanced using concatenation. Complete (or c in the name of the

artefact) is used to name identify the version that rebalances completely the subtree.

The other one is named Quick or q in the name of the artefact.

For testing purposes, for each implementation there is a second one generated with heavy

assertions on the whole structure of the vector on most methods (see 5.2). Concrete

benchmarks are also generated at the same time.

Generating this code was the only reasonable way to implement this huge amount of

classes while implementing new features on them. Changes that would otherwise had

to be propagated by hand on each one. This also help to find and fix bugs, because a

bug has a higher probability of affecting at least one of the artefact and a fix for a bug

is reflected on all of them.

4Located in the scala.collection.immutable.rrbvector package on GitHub
5All generated artefacts are in the scala.collection.immutable.generated.rrbvector

package on GitHub
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4.4 Benchmarks

Performance benchmarks aim to compare the performance of all core operations of the

vectors. These operations are: apply, concatenate, append, prepend, take,

drop. The performance of specialized operations for the iterators, builder and the

parallel vector where also benchmarked. Additionally, the memory footprint of different

vectors was checked.

The axis of comparisons are:

• Size of the vector. Split into ranges that correspond to vectors of the same height,

when perfectly balanced.

• Vector against completely balanced RRBVector

• Differently balanced RRBVectors: perfectly balanced, unbalanced (by one con-

catenation) and extremely unbalanced. This is ignored on vector of depth lesser

than 3 because there all those vectors end up being perfectly balanced.

• Different block sizes: 32 (original), 64, 128 and 256.

• Different implementation of the rebalancing in concatenate: Complete rebal-

ance and Quick rebalance

• Thread pool size for parallel vectors.

For the results of this sections, all benchmarks where executed on a Java HotSpot(TM)

64-Bit Server VM on a machine with an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

with 32GiB on RAM. Each benchmarking VM instance was setup with 16GiB of heap

memory.

4.4.1 Apply

The apply benchmarks aim to show the amortized access time of elements. Amortizing

the displays optimization and memory caches. For this, each benchmark invokes the

apply operation 10k times on different elements.

There are two variants: the first variant access the elements sequentially and the sec-

ond one chooses each time a random index. The first one is supposed to have better

performance because the array that are access tend to be in cache. The computations

of the next index is also a bit more complex on the second one, but mostly irrelevant

compared with the cache misses of all the arrays on a branch.
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The benchmark results for the sequential access in figures 4.1 and 4.2 show that if the

RRB-Vector is balanced or just slightly unbalanced will be faster than the RB-Vector.

But when it gets extremely unbalanced the performance can drop by around 0.5X which

is proportional to the increase of arrays that must be accessed (two per node).

Figure 4.1: Time to execute 10k apply operations on sequential indices on vectors of
height 2.

The performance improvements where achieved by analyzing the sizes of the functions

involved, there inlining and which parts of the code is used in each case. The aim was

to improve performance of unbalanced vectors, that is why in some cases the slightly

unbalanced vector is the fastest.
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Figure 4.2: Time to execute 10k apply operations on sequential indices on vectors of
height 3.

Figure 4.3 shows the results for random indices. It can be observed that the behaviour

of the curve is quite similar, but the sequential one is around 2X faster due to memory

locality.

Figure 4.3: Time to execute 10k apply operations on random indices on vectors of
height 3.

Finally, the figures 4.4 show what would happen if the block sizes changed or if the
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rebalance algorithm is changed. Note that in the cases for blocks of 128 and 256 the

complete rebalance is actually creating completely balanced vectors. It can be observed

that the quick rebalance is harmful to the performance of the apply method. Increasing

the sizes of the arrays will improve the performance of the apply method.

Figure 4.4: Time to execute 10k apply operations on sequential indices. Comparing
performances for different block sizes and different implementation of the concatenation

inner branch rebalancing (Complete/Quick).

4.4.2 Concatenation

The concatenation benchmarks aim to show the benefit of having the logarithmic

concatenation algorithm against the linear version. The benchmarks concatenate two

vectors of the same type and balance characteristics. As such these benchmarks have

two axis representing the sizes of the LHS and RHS vector in the operation.

Figure 4.5 shows how the concatenation time for RB-Vectors is linear on the size of

the resulting vector. Below that, the three surfaces that represent the RRB-Vector

concatenation are effectively constant time (or log32(n)). The performance difference

between the differently balanced RRB-Vectors is negligible in relation to the difference

with RB-Vector.

In the case of concatenation, being balanced or not does not impose performance im-

provements or degradations. Performance will be determined by the number elements

in the branches that get merged and their alignment.
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Figure 4.5: Execution time for a concatenation operation on two vectors. In theory
(and in practice) Vector concatenation is O(left+ right) and the rrbVector concatena-

tion operation is O(log32(left + right)).

The benchmark for the Quick rebalancing version where not included here because the

implementation for that one is suboptimal and the comparison would not be fair. The

main purpose of that version is to show the differences it would cause on other operations.

The current version of the Quick rebalancing can achieve 2X performance benefit, but it

could gain a lot form the same optimizations that were used on the Complete rebalancing.

4.4.3 Append

The append benchmarks aim to show the amortized time taken to append elements.

With the transient states, the branch updates are amortized over leaf updates. For this,

each benchmark appends 256 elements on a vector. This way there is at least one branch

update for each benchmark, 8 if the block size is 32.

The figures 4.6 and 4.7 show that if the RRB-Vectors are balanced or just slightly

unbalanced the execution time is equivalent to the one for RB-Vectors. But, if it gets

extremely unbalanced the performance can fall to by 0.6X. In figure 4.6 it is possible to

see that after 768 the performance does a step upward, this correspond to the addition

of a level in the tree.
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Figure 4.6: Time to execute 256 append operations on vectors of height 2. This shows
the amortized cost of the append operation.

Figure 4.7: Time to execute 256 append operations on vectors of height 3. This shows
the amortized cost of the append operation.

Finally, the figures 4.8 show what would happen if the block sizes changed or if the

rebalance algorithm is changed. Note that in the cases for blocks of 128 and 256 the

complete rebalance is actually creating completely balanced vectors (from 16384 down in

the case of 128). It can be observed that the quick rebalance is hurtful to the performance
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of the append method. Increasing the sizes of the arrays will decrease the performance

for balanced trees, but can potentially reduce the amount of unbalanced nodes in the

extremely unbalanced trees.

Figure 4.8: Time to execute 256 append operations. This shows the amortized cost of
the append operation. Comparing performances for different block sizes and different

implementation of the concatenation inner branch rebalancing (Complete/Quick).

4.4.4 Prepend

The prepend benchmarks aim to show the amortized time taken to prepending ele-

ments. With the transient states, the branch updates are amortized over leaf updates.

For this, each benchmark appends 256 elements on a vector. This way there is at least

one branch update for each benchmark, 8 if the block size is 32.

The figures 4.9 and 4.10 show that the prepend operation on a balanced RRB-Vector is

a bit slower. This is because prepending on this kind of vector requires the creation or

update of an unbalanced node. But, this is a a case where the unbalanced vectors end

up being more performant. This is because on these vectors it is possible to find space

to prepend elements on the left of the tree. In figure 4.9 it is possible to see that after

768 the performance does a step upward, this correspond to the addition of a level in

the tree.
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Figure 4.9: Time to execute 256 prepend operations on vectors of height 2. This
shows the amortized cost of the prepend operation.

Figure 4.10: Time to execute 256 prepend operations on vectors of height 3. This
shows the amortized cost of the prepend operation.

Finally, the figures 4.11 show what would happen if the block sizes changed or if the

rebalance algorithm is changed. Note that with 128 and 256 there are some performance
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degradation. They probably reflect the limit in cache-line locality where the node up-

dates become linear again due to memory accesses and updates. The performance for

blocks of size 32 and 64 are quite similar, but it is more stable for 64 because it needs a

lesser number of branch updates.

Figure 4.11: Time to execute 256 prepend operations. This shows the amortized cost
of the append operation. Comparing performances for different block sizes and different

implementation of the concatenation inner branch rebalancing (Complete/Quick).

4.4.5 Splits

The take and drop benchmarks aimed to show the performance of those operation on

a couple of splitting points. The splitting points where done on the middle of the vectors

an on the first quarter of the vector.

Figure 4.12 shows the performance for the take operation, and figure 4.13. The perfor-

mances are not always ideal. But the different types of vector have a consistent splitting

time with different splitting indices and operation (take against drop).

To be consistent with the other benchmarks, the characterization of vector was done by

size. But, maybe this was not ideal as the characteristics of the branch that is being

split and the index where it’s split are more influential on performance than the size.
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Figure 4.12: Execution time of take.

Figure 4.13: Execution time of drop.
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4.4.6 Iterator

The iteration benchmarks aim to show the performance of traversing the whole vector

using an iterator. Linear behaviour is expected from these benchmarks.

Figure 4.14: Excecution time to iterate through all the elements of the vector.

Figures 4.14 and 4.15 show that for balanced RRB-Vectors the performances is identical.

For slightly unbalanced once there is an increase in performance that seams to come from

JIT optimizations of the code. In that case the code that is used to change branches

uses fewer lines of code in each function (some are never access at runtime), it could be

possible that the optimizer is using this to improve the performance6.

When the vectors become extremely unbalanced, the performance degenerates by a

factor proportional to the height of the vector. Because it changes from one balanced

subtree to the next one from the root. It should be possible, by keeping more state in

the iterator, to improve the performance to go from one balanced subtree to the next.

But this would increase the initialization time and might affect smaller vectors.

6Further analysis on this situation should be done in the future.
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Figure 4.15: Excecution time to iterate through all the elements of the vector.

Finally, the figures 4.16 show what would happen if the block sizes changed or if the

rebalance algorithm is changed. In general the quick rebalancing is usually worst than

complete rebalancing for the iterator. The block sizes do not change much the per-

formance of the iterator. This is a great result because it means that the overhead of

traversing the tree is insignificant when traversing the vector, the cost is in the traversal

of the leafs.
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Figure 4.16: Excecution time to iterate through all the elements of the vector. Com-
paring performances for different block sizes and different implementation of the con-

catenation inner branch rebalancing (Complete/Quick).

4.4.7 Builder

The builder benchmarks aim to show the time it takes to build a vector of some size

by appending elements. The performance of this is expected to be linear. Note that all

vectors that are generated will be completely balanced.

Figures 4.17 and 4.18 show that the RB and RRB vector builder have the same results.

This is not surprising, because the have the same code for appending elements, except

for a small detail. The RRB Vector allocates arrays with one additional slot for all

branch nodes.
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Figure 4.17: Execution time to build a vector of a given size for trees of depth 3.

Figure 4.18: Execution time to build a vector of a given size for trees of depth 4.

Increasing the sizes of the blocks will reduce the amounts of blocks that need to be

allocated during the building. Larger blocks will also take slightly longer to allocate.

Figure 4.19 shows that the difference isn’t substantial, but has a sweet spot on blocks

of size 64 for builders.
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Figure 4.19: Execution time to build a vector of a given size. Comparing performances
for different block sizes.

4.4.8 Parallel split-combine

The aim of the parallel benchmarks is to show the overhead of the parallel framework.

Specifically, the time spent in splitting and combining the vectors during parallel execu-

tion. For this the benchmarks execute a map on the identity function7. This operation

is done on the standard sequential version of the vector and on the parallel one.

In figure 4.20 it can be seen that the base sequential map is exactly the same for both

implementation. This was expected because the map implementation uses an iterator

and builder to compute it in both cases, which have the same performance.

The results for the parallel RB Vector show that with 1, 2 and 4 threads the perfor-

mance of the operation is worse. With 8 threads it becomes a little bit faster. This

is what we expected, due to the lazy concatenation at the end of the combination of

results. But, it shows that this parallel collection is useless in practice.

When using the RRB-Vectors parallel, the parallelism is evident. With two threads the

performance improvement is of almost 2X, then it tends to go towards 2.5X. This is the

type of parallelism behaviour that is expected (see Amdahl’s law[8]). Even the case on

a thread pool of one thread is a bit faster than the normal sequential one, as the thread

is dedicated.

7The function that simply returns the element passed as parameter.
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Figure 4.20: Benchmark on map and parallel map using the function (x=>x) to
show the difference time used in the framework. This time represents the time spent
in the splitters and combiners of the parallel collection (iterator and builder for the

sequential version).

Figure 4.21 shows how unbalanced parallel vector behave. There is a slight loss in

performance when they are unbalanced. But, this operations will create a balanced

vector and therefore this small overhead can be amortized over the next operations.

For vectors smaller than 1024 the combine operation parallelism is lost. This is a conse-

quence of the rebalance in the concatenation algorithm. Better calibration or a different

approach for this range of sizes could improve it further.
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Figure 4.21: Benchmark on map and parallel map using the function (x=>x) to
show the difference time used in the framework. This time represents the time spent

in the splitters and combiners of the parallel collection.

4.4.9 Memory footprint

This is not really a benchmark, it is rather the characterization of the memory footprint

of the vectors that where used as input in the benchmarks. The aim of this is to show

that even with the additional sizes of the unbalanced nodes and additional fields, the

vectors size in memory is almost the same.

Figure 4.22 shows that even for an extremely unbalanced RRB-Vector the increase in

size is negligible. In fact, for balanced ones it is even possible to have a smaller footprint

(a few bytes) caused by the truncation of the last branch.



Performance in Practice 56

Figure 4.22: Memory Footprint for different vectors.

Figure 4.23 shows the amount of space that could be saved by increasing the size of the

block. The difference is not significant and as such the memory footprint is not a reason

to change the size of blocks.

Figure 4.23: Memory Footprint for different block sizes.

I



Chapter 5

Testing

5.1 Black Box Testing

Tests on vector where done using the Scala Test framework. The test suite covers all

core operations and some of the ones that are implemented in IndexedSeq. It also

covers iterators, builders and parallel versions. Operations on IndexedSeq are crossed

checked with other existing implementations.

The same test suite is used on the current Vector and on RRBVector. This way the

test suite is also checked against the expected results from the current implementation.

The test suite on RRBVector is executed on several sizes of vectors, with perfectly

balanced vectors and several pseudo randomly unbalanced vectors. Each time a bug

was identified, the tests where extended to include the case where it failed.

These tests where usually executed in combination with the white box tests. This way

test have a larger coverage and will fail at the moment where the bug first appeared.

5.2 White Box Testing

White box testing is done using a set of heavy assertions on the invariants of the vector1.

They test that the coherence of the three structure and the fields of vector. This test is

done after the creation of any new vector object and after any canonicalization operation

(see 3.2.4). This covers all the cases as no mutation is done in between of after those

operations (assuming a non concurrent context during the test).

1This is implemented in the private method assertVectorInvariant of RRBVector.
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The vector invariant is divided into canonical and transient, where both test the same

characteristics with some differences on the focused branch. The invariant includes tests

on the bounds of depth, endIndex, focus, focusStart, focusEnd. It traverses

the whole tree structure checking the structure of each node and crosschecking sizes

(from sizes array and expected endIndex). For canonical states it checks the the

branch in the displays is coherent with the tree an focus. For transient state it checks

that the focused branch is unlinked.

I



Chapter 6

Related and Future Work

6.1 Related Work

List of related subjects:

• RRB Trees and Vectors [1, 3, 4, 9, 10]

• Scala [11, 12]

• Scala Collections [3, 13–17]

• Scala Parallel Collections [4, 5, 18–20]

• Functional data structures and semi-mutable data structures and related data

structures [21–28]

• Performance and Code specialization [29–32]

• JVM: Arrays, GC, JIT compiler [33–35]

• ScalaMeter [7, 36]

• Scala Test [37]

• Scala Reflection and Quasiquotes [38, 39]

• Type specialization and Miniboxing [6, 15, 40–42]
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6.2 Future Work

Mesure unbalance One analysis that was left out of the scope of this project was

the characterization of the vectors unbalance. There is currently no way to quantita-

tively measure the unbalance of on the tree node. Some ideas for this are: number of

unbalanced nodes, number of balanced subtrees, average height of balanced subtrees, ...

Once this measurement exists it would be possible to conduct a real world application

characterization of these vectors. And see how common the unbalanced vectors are

and if they are only slightly unbalanced or extremely unbalanced. From this it would

be possible to give a true expected performance for the cases where the performances

differ.

Miniboxing As discussed in section 3.1.1, when primitive types are used in vector they

become boxed. A proposed solution to this phenomenon is using Miniboxing [6, 15] on

the vectors. Applying this transformation on the type parameter of the vector will re-

move boxing in the method calls. Additionally, this allows the use of MbArray on the

leafs, these arrays take advantage of the additional type information that Miniboxing

provides and applies it opportunistically. A prototype of this vector is already imple-

mented in this project repository1. The prototype shows that the boxing is removed

and that the leafs arrays are getting specialized. Tests and benchmarks specific to this

implementation details are still required.

Simplify Code It should be possible to simplify and reduce the amount of code of

the Scala implementation of vector using Scala Macros [38] to expand and optimize the

code that was done manually. This was partially done on the vector implementation

generators (see 4.3), where some key abstractions generate most of the expansions. This

is a good basis to write such macros.

Another way to simplify the code would involve the creation of a new abstraction that

would compile down to bytecode tableswitch instructions with fallthroughs. A switch

with no breaks should be enough2. This could help a bit with performance.

Formalization There is still the need for formal proof on some operations. Mainly for

the optimized implementations of the relaxed operations. The canonicalization operation

of the vector also needs a formal proof and may be a interesting study case for immutable

data structures with simple internal mutation schemes. I

1Project [2] under the adding-miniboxing branch.
2Look at copyDisplays function in the code, the if/else expressions could be replaced by a single

switch statement.
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Conclusions

The new implementation of vector uses the RRB-Trees while using all the optimizations

that where possible on RB-Trees. In most cases they are applied on balanced subtrees.

The algorithm variant chosen for the concatenation yield better balanced subtrees for

a small cost in performance, a cost that is considered irrelevant considering that the

algorithm improved from linear time to constant time.

The implementation achieved the performance goals in most cases. Usually the perfor-

mance degrades only when the vector is extremely unbalanced. Effective constant time

(or in some cases amortized constant time from log32(n)) was achieved for all the core

operations: apply, appended, prepended, updated, take, drop, concatenated and insert.

It was also showed that with relaxed trees the branch sizes of 32 are still the best choice

for the performance of these operations.

Parallel vector achieved the desired parallelism on the fork-join pools using their split-

combine operations. Benchmarks showed a 2.3X improvement on the data split and

combination on a 4 thread pool.
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