forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
166 lines (150 loc) · 6.32 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import paddle
import paddle.nn.functional as F
from paddlenlp.data import JiebaTokenizer, Stack, Tuple, Pad, Vocab
from model import BoWModel, BiLSTMAttentionModel, CNNModel, LSTMModel, GRUModel, RNNModel, SelfInteractiveAttention
from utils import preprocess_prediction_data
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument('--device', choices=['cpu', 'gpu', 'xpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument("--batch_size", type=int, default=1, help="Total examples' number of a batch for training.")
parser.add_argument("--vocab_path", type=str, default="./senta_word_dict.txt", help="The path to vocabulary.")
parser.add_argument('--network', choices=['bow', 'lstm', 'bilstm', 'gru', 'bigru', 'rnn', 'birnn', 'bilstm_attn', 'cnn'],
default="bilstm", help="Select which network to train, defaults to bilstm.")
parser.add_argument("--params_path", type=str, default='./checkpoints/final.pdparams', help="The path of model parameter to be loaded.")
args = parser.parse_args()
# yapf: enable
def predict(model, data, label_map, batch_size=1, pad_token_id=0):
"""
Predicts the data labels.
Args:
model (obj:`paddle.nn.Layer`): A model to classify texts.
data (obj:`List(Example)`): The processed data whose each element is a Example (numedtuple) object.
A Example object contains `text`(word_ids) and `se_len`(sequence length).
label_map(obj:`dict`): The label id (key) to label str (value) map.
batch_size(obj:`int`, defaults to 1): The number of batch.
pad_token_id(obj:`int`, optional, defaults to 0): The pad token index.
Returns:
results(obj:`dict`): All the predictions labels.
"""
# Seperates data into some batches.
batches = [
data[idx:idx + batch_size] for idx in range(0, len(data), batch_size)
]
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=pad_token_id), # input_ids
Stack(dtype="int64"), # seq len
): [data for data in fn(samples)]
results = []
model.eval()
for batch in batches:
texts, seq_lens = batchify_fn(batch)
texts = paddle.to_tensor(texts)
seq_lens = paddle.to_tensor(seq_lens)
logits = model(texts, seq_lens)
probs = F.softmax(logits, axis=1)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [label_map[i] for i in idx]
results.extend(labels)
return results
if __name__ == "__main__":
paddle.set_device(args.device.lower())
# Loads vocab.
vocab = Vocab.load_vocabulary(
args.vocab_path, unk_token='[UNK]', pad_token='[PAD]')
label_map = {0: 'negative', 1: 'positive'}
# Constructs the newtork.
network = args.network.lower()
vocab_size = len(vocab)
num_classes = len(label_map)
pad_token_id = vocab.to_indices('[PAD]')
if network == 'bow':
model = BoWModel(vocab_size, num_classes, padding_idx=pad_token_id)
elif network == 'bigru':
model = GRUModel(
vocab_size,
num_classes,
direction='bidirect',
padding_idx=pad_token_id)
elif network == 'bilstm':
model = LSTMModel(
vocab_size,
num_classes,
direction='bidirect',
padding_idx=pad_token_id)
elif network == 'bilstm_attn':
lstm_hidden_size = 196
attention = SelfInteractiveAttention(hidden_size=2 * lstm_hidden_size)
model = BiLSTMAttentionModel(
attention_layer=attention,
vocab_size=vocab_size,
lstm_hidden_size=lstm_hidden_size,
num_classes=num_classes,
padding_idx=pad_token_id)
elif network == 'birnn':
model = RNNModel(
vocab_size,
num_classes,
direction='bidirect',
padding_idx=pad_token_id)
elif network == 'cnn':
model = CNNModel(vocab_size, num_classes, padding_idx=pad_token_id)
elif network == 'gru':
model = GRUModel(
vocab_size,
num_classes,
direction='forward',
padding_idx=pad_token_id,
pooling_type='max')
elif network == 'lstm':
model = LSTMModel(
vocab_size,
num_classes,
direction='forward',
padding_idx=pad_token_id,
pooling_type='max')
elif network == 'rnn':
model = RNNModel(
vocab_size,
num_classes,
direction='forward',
padding_idx=pad_token_id,
pooling_type='max')
else:
raise ValueError(
"Unknown network: %s, it must be one of bow, lstm, bilstm, cnn, gru, bigru, rnn, birnn and bilstm_attn."
% network)
# Loads model parameters.
state_dict = paddle.load(args.params_path)
model.set_dict(state_dict)
print("Loaded parameters from %s" % args.params_path)
# Firstly pre-processing prediction data and then do predict.
data = [
'这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般',
'怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片',
'作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。',
]
tokenizer = JiebaTokenizer(vocab)
examples = preprocess_prediction_data(data, tokenizer)
results = predict(
model,
examples,
label_map=label_map,
batch_size=args.batch_size,
pad_token_id=vocab.token_to_idx.get("[PAD]", 0))
for idx, text in enumerate(data):
print('Data: {} \t Label: {}'.format(text, results[idx]))