forked from nianticlabs/acezero
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_ace.py
executable file
·241 lines (161 loc) · 12.7 KB
/
train_ace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env python3
# Copyright © Niantic, Inc. 2022.
import argparse
import logging
from distutils.util import strtobool
from pathlib import Path
from ace_trainer import TrainerACE
def _strtobool(x):
return bool(strtobool(x))
if __name__ == '__main__':
# Setup logging levels.
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser(
description='Fast training of a scene coordinate regression network.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('rgb_files', type=str, help="Glob pattern for RGB files, e.g. 'datasets/scene/*.jpg'")
parser.add_argument('output_map_file', type=Path,
help='target file for the trained network')
parser.add_argument('--base_seed', type=int, default=2089,
help='seed to control randomness')
# === Data definition ==============================================================================================
parser.add_argument('--pose_files', type=str, default=None,
help="Glob pattern for pose files, e.g. 'datasets/scene/*.txt', each file is assumed to "
"contain a 4x4 pose matrix, cam2world, correspondence with rgb files is assumed by "
"alphabetical order; None: provide poses via use_ace_pose_file or use_pose_seed")
parser.add_argument('--use_ace_pose_file', type=Path, default=None,
help='ACE pose file containing mapping images to use, their poses and focal lengths;'
'None: provide poses via pose_files or use_pose_seed')
parser.add_argument('--ace_pose_file_conf_threshold', type=float, default=1000,
help='Consider only files with larger confidence in ACE pose file')
parser.add_argument('--use_pose_seed', type=float, default=-1,
help='use a single image with identity pose as seed, '
'float value [0-1] represents image ID relative to dataset size, -1: do not use seed')
parser.add_argument('--depth_files', type=str, default=None,
help="Glob pattern for depth files, e.g. 'datasets/scene/*.png', each file is assumed to "
"contain depth in millimeters, correspondence with rgb files is assumed by "
"alphabetical order, None: Don't use depth.")
parser.add_argument('--refine_calibration', type=_strtobool, default=False,
help='Refine calibration parameters.')
parser.add_argument('--refine_calibration_lr', type=float, default=0.001,
help='Learning rate for refining calibration parameters.')
parser.add_argument('--use_heuristic_focal_length', type=_strtobool, default=False,
help="Focal length set to 70% of image diagonal. Recommended to activate refine_calibration."
"If False, use_external_focal_length or use_ace_pose_file must be set.")
parser.add_argument('--use_external_focal_length', type=float, default=None,
help="Set external focal length value. Can be combined with refine_calibration."
"If None, use_heuristic_focal_length or use_ace_pose_file must be set.")
parser.add_argument('--image_resolution', type=int, default=480,
help='base image resolution (px length of shortest side), will rescale images to this')
parser.add_argument('--num_data_workers', type=int, default=12,
help='number of data loading workers, set according to the number of available CPU cores')
# === Network definition ===========================================================================================
parser.add_argument('--encoder_path', type=Path, default=Path(__file__).parent / "ace_encoder_pretrained.pt",
help='file containing pre-trained encoder weights')
parser.add_argument('--load_weights', type=Path, help='path to initialised network weights', default=None)
parser.add_argument('--num_head_blocks', type=int, default=1,
help='depth of the regression head, defines the map size')
parser.add_argument('--use_half', type=_strtobool, default=True,
help='train with half precision')
parser.add_argument('--use_homogeneous', type=_strtobool, default=True,
help='predict homogeneous scene coordinates')
# === Learning rate schedule =======================================================================================
parser.add_argument('--learning_rate_min', type=float, default=0.0005,
help='lowest learning rate of 1 cycle scheduler')
parser.add_argument('--learning_rate_max', type=float, default=0.005,
help='highest learning rate of 1 cycle scheduler')
parser.add_argument('--learning_rate_schedule', type=str, default="circle",
choices=["circle", "constant", "1cyclepoly"],
help='circle: move from min to max to min, constant: stay at min, '
'1cyclepoly: linear approximation of 1cycle')
parser.add_argument('--learning_rate_warmup_iterations', type=int, default=1000,
help='length of the warmup period')
parser.add_argument('--learning_rate_warmup_learning_rate', type=float, default=0.0005,
help='start learning rate of 1cycle poly')
parser.add_argument('--learning_rate_cooldown_iterations', type=int, default=5000,
help='length of the cooldown period')
parser.add_argument('--learning_rate_cooldown_trigger_px_threshold', type=int, default=10,
help='inlier threshold for early cool down criterium')
parser.add_argument('--learning_rate_cooldown_trigger_percent_threshold', type=float, default=0.7,
help='min percentage of inliers for early cool down')
# === ACE training buffer ==========================================================================================
parser.add_argument('--max_training_buffer_size', type=int, default=8000000,
help='number of patches in the training buffer')
parser.add_argument('--max_dataset_passes', type=int, default=10,
help='max number of repetition of mapping images (with different augmentations)')
parser.add_argument('--samples_per_image', type=int, default=1024,
help='number of patches drawn from each image when creating the buffer')
parser.add_argument('--training_buffer_cpu', type=_strtobool, default=False,
help='store training buffer on CPU memory instead of GPU, '
'this allows running ACE0 on smaller GPUs, but is slower')
# === Optimization parameters ======================================================================================
parser.add_argument('--batch_size', type=int, default=5120,
help='number of patches for each parameter update (has to be a multiple of 512)')
parser.add_argument('--iterations', type=int, default=25000,
help='number of runs through the training buffer')
parser.add_argument('--iterations_output', type=int, default=300,
help='print training statistics every n iterations, also render_visualization frame frequency')
# === Loss Definition ==============================================================================================
parser.add_argument('--repro_loss_hard_clamp', type=int, default=1000,
help='hard clamping threshold for the reprojection losses')
parser.add_argument('--repro_loss_soft_clamp', type=int, default=50,
help='soft clamping threshold for the reprojection losses')
parser.add_argument('--repro_loss_soft_clamp_min', type=int, default=1,
help='minimum value of the soft clamping threshold when using a schedule')
parser.add_argument('--repro_loss_type', type=str, default="dyntanh",
choices=["l1", "l1+sqrt", "l1+log", "tanh", "dyntanh"],
help='Loss function on the reprojection error. Dyn varies the soft clamping threshold')
parser.add_argument('--repro_loss_schedule', type=str, default="circle", choices=['circle', 'linear'],
help='How to decrease the softclamp threshold during training, circle is slower first')
parser.add_argument('--depth_min', type=float, default=0.1,
help='enforce minimum depth of network predictions')
parser.add_argument('--depth_target', type=float, default=10,
help='default depth to regularize training')
parser.add_argument('--depth_max', type=float, default=1000,
help='enforce maximum depth of network predictions')
# === Data augmentation ============================================================================================
parser.add_argument('--use_aug', type=_strtobool, default=True,
help='Use any augmentation.')
parser.add_argument('--aug_rotation', type=int, default=15,
help='max inplane rotation angle')
parser.add_argument('--aug_scale', type=float, default=1.5,
help='max scale factor')
# === Visualisation parameters =====================================================================================
# Params for the visualization. If enabled, it will slow down training considerably. But you get a nice video :)
parser.add_argument('--render_visualization', type=_strtobool, default=False,
help='create a video of the mapping process')
parser.add_argument('--render_target_path', type=Path, default='renderings',
help='target folder for renderings, visualizer will create a subfolder with the map name')
parser.add_argument('--use_existing_vis_buffer', type=Path, default=None,
help='continue from existing visualization state')
parser.add_argument('--render_flipped_portrait', type=_strtobool, default=False,
help='flag for wayspots dataset where images are sideways portrait')
parser.add_argument('--render_map_error_threshold', type=int, default=10,
help='reprojection error threshold for the visualisation in px')
parser.add_argument('--render_map_depth_filter', type=int, default=100,
help='to clean up the ACE point cloud remove points too far away')
parser.add_argument('--render_camera_z_offset', type=int, default=4,
help='zoom out of the scene by moving render camera backwards, in meters')
parser.add_argument('--render_marker_size', type=float, default=0.03,
help='size of the camera frustums in the visualization')
# === Pose refinement parameters ===================================================================================
parser.add_argument('--pose_refinement', type=str, default='none', choices=['none', 'naive', 'mlp'],
help='refine poses with a neural network (mlp) or by back-propagation to poses (naive)')
parser.add_argument('--pose_refinement_weight', type=float, default=0.1,
help='weight to scale the refiner pose updates, '
'mainly to reduce the impact of random updates in the beginning of the optimization')
parser.add_argument('--pose_refinement_wait', type=int, default=0,
help='start pose refinement after n iterations, can increase stability')
parser.add_argument('--pose_refinement_lr', type=float, default=0.001,
help='learning rate for the pose refinement')
parser.add_argument('--refinement_ortho', type=str, default="gram-schmidt", choices=['gram-schmidt', 'procrustes'],
help='orthogonalization method for pose rotations after pose updates')
options = parser.parse_args()
if options.use_pose_seed < 0 and options.use_ace_pose_file is None and options.pose_files is None:
raise ValueError("Either use_pose_seed or use_ace_pose_file or pose_files has to be set.")
if not options.use_heuristic_focal_length and options.use_external_focal_length is None \
and options.use_ace_pose_file is None:
raise ValueError("Either use_heuristic_focal_length or use_external_focal_length "
"or use_ace_pose_file has to be set.")
trainer = TrainerACE(options)
trainer.train()