Skip to content

Latest commit

 

History

History
184 lines (136 loc) · 6.82 KB

README.rst

File metadata and controls

184 lines (136 loc) · 6.82 KB

requests Kerberos/GSSAPI authentication library

Requests is an HTTP library, written in Python, for human beings. This library adds optional Kerberos/GSSAPI authentication support and supports mutual authentication. Basic GET usage:

>>> import requests
>>> from requests_kerberos import HTTPKerberosAuth
>>> r = requests.get("http://example.org", auth=HTTPKerberosAuth())
...

The entire requests.api should be supported.

Setup

In order to use this library, there must already be a Kerberos Ticket-Granting Ticket(TGT) cached in a Kerberos credential cache. Whether a TGT is available can be easily determined by running the klist command. If no TGT is available, then it first must be obtained by running the kinit command, or pointing the $KRB5CCNAME to a credential cache with a valid TGT.

In short, the library will handle the "negotiations" of Kerberos authentication, but ensuring that an initial TGT is available and valid is the responsibility of the user.

Authentication Failures

Client authentication failures will be communicated to the caller by returning the 401 response. A 401 response may also come from an expired Ticket-Granting Ticket.

Mutual Authentication

REQUIRED

By default, HTTPKerberosAuth will require mutual authentication from the server, and if a server emits a non-error response which cannot be authenticated, a requests_kerberos.errors.MutualAuthenticationError will be raised. If a server emits an error which cannot be authenticated, it will be returned to the user but with its contents and headers stripped. If the response content is more important than the need for mutual auth on errors, (eg, for certain WinRM calls) the stripping behavior can be suppressed by setting sanitize_mutual_error_response=False:

>>> import requests
>>> from requests_kerberos import HTTPKerberosAuth, REQUIRED
>>> kerberos_auth = HTTPKerberosAuth(mutual_authentication=REQUIRED, sanitize_mutual_error_response=False)
>>> r = requests.get("https://windows.example.org/wsman", auth=kerberos_auth)
...

OPTIONAL

If you'd prefer to not require mutual authentication, you can set your preference when constructing your HTTPKerberosAuth object:

>>> import requests
>>> from requests_kerberos import HTTPKerberosAuth, OPTIONAL
>>> kerberos_auth = HTTPKerberosAuth(mutual_authentication=OPTIONAL)
>>> r = requests.get("http://example.org", auth=kerberos_auth)
...

This will cause requests_kerberos to attempt mutual authentication if the server advertises that it supports it, and cause a failure if authentication fails, but not if the server does not support it at all.

DISABLED

While we don't recommend it, if you'd prefer to never attempt mutual authentication, you can do that as well:

>>> import requests
>>> from requests_kerberos import HTTPKerberosAuth, DISABLED
>>> kerberos_auth = HTTPKerberosAuth(mutual_authentication=DISABLED)
>>> r = requests.get("http://example.org", auth=kerberos_auth)
...

Preemptive Authentication

HTTPKerberosAuth can be forced to preemptively initiate the Kerberos GSS exchange and present a Kerberos ticket on the initial request (and all subsequent). By default, authentication only occurs after a 401 Unauthorized response containing a Kerberos or Negotiate challenge is received from the origin server. This can cause mutual authentication failures for hosts that use a persistent connection (eg, Windows/WinRM), as no Kerberos challenges are sent after the initial auth handshake. This behavior can be altered by setting force_preemptive=True:

>>> import requests
>>> from requests_kerberos import HTTPKerberosAuth, REQUIRED
>>> kerberos_auth = HTTPKerberosAuth(mutual_authentication=REQUIRED, force_preemptive=True)
>>> r = requests.get("https://windows.example.org/wsman", auth=kerberos_auth)
...

Hostname Override

If communicating with a host whose DNS name doesn't match its kerberos hostname (eg, behind a content switch or load balancer), the hostname used for the Kerberos GSS exchange can be overridden by setting the hostname_override arg:

>>> import requests
>>> from requests_kerberos import HTTPKerberosAuth, REQUIRED
>>> kerberos_auth = HTTPKerberosAuth(hostname_override="internalhost.local")
>>> r = requests.get("https://externalhost.example.org/", auth=kerberos_auth)
...

Explicit Principal

HTTPKerberosAuth normally uses the default principal (ie, the user for whom you last ran kinit or kswitch, or an SSO credential if applicable). However, an explicit principal can be specified, which will cause Kerberos to look for a matching credential cache for the named user. This feature depends on OS support for collection-type credential caches, as well as working principal support in PyKerberos (it is broken in many builds). An explicit principal can be specified with the principal arg:

>>> import requests
>>> from requests_kerberos import HTTPKerberosAuth, REQUIRED
>>> kerberos_auth = HTTPKerberosAuth(principal="user@REALM")
>>> r = requests.get("http://example.org", auth=kerberos_auth)
...

On Windows, WinKerberos is used instead of PyKerberos. WinKerberos allows the use of arbitrary principals instead of a credential cache. Passwords can be specified by following the form user@realm:password for principal.

Delegation

requests_kerberos supports credential delegation (GSS_C_DELEG_FLAG). To enable delegation of credentials to a server that requests delegation, pass delegate=True to HTTPKerberosAuth:

>>> import requests
>>> from requests_kerberos import HTTPKerberosAuth
>>> r = requests.get("http://example.org", auth=HTTPKerberosAuth(delegate=True))
...

Be careful to only allow delegation to servers you trust as they will be able to impersonate you using the delegated credentials.

Logging

This library makes extensive use of Python's logging facilities.

Log messages are logged to the requests_kerberos and requests_kerberos.kerberos_ named loggers.

If you are having difficulty we suggest you configure logging. Issues with the underlying kerberos libraries will be made apparent. Additionally, copious debug information is made available which may assist in troubleshooting if you increase your log level all the way up to debug.