先验概率: 我们对于某个事物的belief,称为prior probability
后验概率: 在先验概率基础上,经过一些evidence之后,updated belief称为posterior probability
The Frequentist inference function would return a number, whereas the Bayesian function would return probabilities.
bernoulli分布: 0-1分布
beta分布: 作为bernoulli分布的密度函数,先验共轭函数
随机变量分为3种: 离散值、连续值、混合值
离散值的分布称为 probability mass function (PMF)
连续值的分布称为 probability density function (PDF)
常见的连续值分布
Exponential分布:
# 假设短信数据分布符合泊松分布, 且E(C|λ) = λ
observation = mc.Poisson( "obs", lambda_, value = count_data, observed = True)
#泊松分布的参数λ,我们假设有一个switch point
@mc.deterministic
def lambda_( tau = tau, lambda_1 = lambda_1, lambda_2 = lambda_2 ):
out = np.zeros( n_count_data )
out[:tau] = lambda_1 #lambda before tau is lambda1
out[tau:] = lambda_2 #lambda after tau is lambda2
return out
# 假设λ符合指数分布
lambda_1 = mc.Exponential( "lambda_1", alpha )
lambda_2 = mc.Exponential( "lambda_2", alpha )
# E(λ|α) = 1/α; E(C|λ) = λ; E(C) = count_data.mean()
alpha = 1.0/count_data.mean()
# P(τ=k)=1/n_count_data
tau = mc.DiscreteUniform( "tau", lower = 0, upper = n_count_data )