
Agile Software Development
(DIT191 / EDA397)

Spring 2017
Eric Knauss

eric.knauss@cse.gu.se
https://github.com/oerich/EDA397

Course setup
• Teaching Assistants

– Terese Besker <besker@chalmers.se>
– Magnus Ågren <magnus.agren@chalmers.se>

• Course representatives

• In parallel:
– PhD course

• Course Material
– http://oerich.github.io/EDA397/
– Meyer, B., (2014) Agile! The Good, the

Hype and the Ugly
– Papers

Agile Dev. Processes | Eric Knauss 2

Course setup (Practical details)

• Schedule
– 0-3 lectures per week
– 0-2 workshops per week
– =3 scheduled activities per week

• Even if there is no lecture, we will be available and you can (should!)
use the rooms/time to work!

• Examination
– Project (teams)

• Final product
• Artifacts
• Experience / Post-Mortem report

– Written exam

Agile Dev. Processes | Eric Knauss 3

Examination
• Written exam, individual, 3.0 credits

– 60 points, 24 required to pass
• Grades

– Chalmers:
• X < 24 à Fail,
• 24 ≤ X < 36 à 3,
• 36 ≤ X < 48 à 4,
• 48 ≤ X à 5

– GU
• X < 24 à Fail,
• 24 ≤ X < 48 à G,
• 48 ≤ X à VG

• Project, 4.5 credits
– Grades: Fail/Pass

based on project participation and group report

Agile Software Dev. | Eric Knauss 4

Project

• Develop software for a customer

• Work in predetermined teams
– https://github.com/oerich/EDA397/wiki/Groupings-of-Teams
– You will be assigned teams
– Focus on agile practices and methodology
– You meet with the customer this Thursday

• and get all the details!

• We strive to create a realistic scenario/ environment
– We rely on a number of real-world services and tools, e.g.
– Android (SDK), GitHub, Trello, (perhaps Jenkins, Gerrit,

SonarCube…)

Agile Dev. Processes | Eric Knauss 5

Course setup

• Three sprints

• Sprint 1: Getting started

• Sprint 2: Getting work done

• Sprint 3: Theory and advanced concepts

Agile Dev. Processes | Eric Knauss 6

Course Objectives
Knowledge	and	
understanding

Skills	and	ability Judgement and	approach

Compare	agile	and	
traditional	softw.	dev,

Forming	a	team	organically Explain:	people/commun.
centric	dev.

Relate	lean	and	agile	
development

Collaborate in	small	
software	dev.	teams

Apply	fact:	people	drive	
project	success

Contrast different	agile	
methodologies

Interact and	show	progress	
continuously

Describe:	No	single	
methodology	fits	all

Use	the	agile	manifest	and	
its	accompanying	principles

Develop	SW using	small	
and	frequent	iterations

Discuss:	methodology	
needs	to	adopt	to	culture	

Discuss	what	is	different
when	leading	an	agile	team

Use	test-driven	dev.	and	
automated	tests

Refactor	a	program/design

Be	member	of	agile	team

Incremental	planning	using	
user	stories

Agile Software Dev. | Eric Knauss 7

Sp
rin

t	1

Sp
rin

t	2

Sp
rin

t	3

Changes since last year

• More choice in project part

• Different course book
– More hands-on, more critical

• Updated slides (ongoing)

• Updated reading list (ongoing)
– Nothing will be added!
– We will indicate which of the papers will not be on the exam

• Much better timeline
– First iteration done before Easter break!

Agile Dev. Processes | Eric Knauss 8

Sprint 1: Getting started

http://commons.wikimedia.org/wiki/File:Sprint_01.jpg

Agile Dev. Processes | Eric Knauss 9

What is agility in Software Development?

http://mediagallery.usatoday.com/New+Flame

Agile:	An	Overview

Agile Dev. Processes | Eric Knauss 10

Motivation

• What is the “Software
crisis”?

– Software development
inefficient

– Software does not meet
requirements

– Projects over time/budget
– Projects were

unmanageable and
software unmaintainable

• What can be done about
it?

àSoftware Engineering
– Application of engineering

to Software
– Systematic, disciplined,

quantifiable approach to
the development,
operation, and
maintenance of software

– Assure quality of process
and product

Agile Dev. Processes | Eric Knauss 11

?
• Do you know examples of

– Systematic, disciplined,
quantifiable approaches to
the development,
operation, and
maintenance of software?

– Applying engineering to
software?

Agile Dev. Processes | Eric Knauss 12

Where are we coming from?

http://commons.wikimedia.org/wiki/File:Waterfall_katoomba.JPG

Requirements

Design

Programming

Test

Agile Dev. Processes | Eric Knauss 13

Systematic sequential development

• Requirements
• Design
• Programming
• Test

• Advantages
– Simple
– Controllable
– Cost efficient

• Problems
– Time-to-market
– What about change?

Agile Dev. Processes | Eric Knauss 14

• Requirements
• Design
• Programming
• Test

What can we do if time to market and robustness against
late changes are more important than cost-efficiency?

• Requirements
• Design
• Programming
• Test

Time-to-market

Time-to-market

Towards concurrent development

Agile Dev. Processes | Eric Knauss 15

?
• What is the consequence

of concurrent
development?
– (hint: why are concurrent

tasks depicted longer than
sequential tasks?)

• What has this to do with
agile?

• What do you know about
agile?

Agile Dev. Processes | Eric Knauss 16

Agile Manifesto

http://agilemanifesto.org
• Began	as	a	provocation:	Plan-driven	development	did	not	safe	the	Software	world…
• Now	a	very	serious	movement,	well	adapted	in	industry.
• There	are	a	couple	of	established	agile	methods:	How	to	integrate	these	values	in	

everyday	software	development

Agile Software Dev. | Eric Knauss 17

What is agile? What is not?

• Agile – a compendium of ideas
– Applied by number of methods

(incl. XP, Scrum, Kanban, Lean Software Development)

• Core characteristics defined through
– Values: General assumptions framing the agile view of the

world
– Principles: Core agile rules, organizational and technical
– Roles: responsibilities and privileges of the various actors in an

agile process
– Practices: specific activities practiced by agile teams
– Artifacts: tools, both virtual and material, that support the

practices

Agile Dev. Processes | Eric Knauss 18

[Mey2014]

Agile Values

1. Redefined	roles	for	developers,	managers,	and	customers
2. No	”Big	Upfront”	steps
3. Iterative	development
4. Limited,	negotiated	functionality
5. Focus	on	quality,	understood	as	achieved	through	testing

Agile Dev. Processes | Eric Knauss 19

[Mey2014]

?
• Can the following projects be

agile?
– App development
– Online shop
– Mission controller for Airplane
– Controller for nuclear plant

• What is a “principle”?
– Abstract
– Falsifiable
– Prescriptive

• Discuss the following agile
principles.
– Do they help to define what is

agile and what not?
– Any problems in the list?

Agile Software Dev. | Eric Knauss 20

Agile Principles# Agile	Principle Comment

1 Our	highest	priority	is	to	satisfy	the	customer	through	early	and	continuous	delivery	of	
valuable	software.	

2 Welcome	changing	requirements,	even	late	in	development.	Agile	processes	harness	
change	for	the	customer's	competitive	advantage.	

3 Deliver	working	software	frequently,	from	a	couple	of	weeks	to	a	couple	of	months,	with	
a	preference	to	the	shorter	timescale.	

4 Business	people	and	developers	must	work	
together	daily	throughout	the	project.	

5 Build	projects	around	motivated	individuals.	Give	them	the	environment	and	support	
they	need,	and	trust	them	to	get	the	job	done.	

6 The	most	efficient	and	effective	method	of	conveying	information	to	and	within	a	
development	team	is	face-to-face	conversation.	

7 Working	software	is	the	primary	measure	of	progress.	

8 Agile	processes	promote	sustainable	development.	The	sponsors,	developers,	and	users	
should	be	able	to	maintain	a	constant	pace	indefinitely.	

9 Continuous	attention	to	technical	excellence	and	good	design	enhances	agility.	

10 Simplicity--the	art	of	maximizing	the	amount	of	work	not	done--is	essential.	

11 The	best	architectures,	requirements,	and	designs	emerge	from	self-organizing	teams.	

12 At	regular	intervals,	the	team	reflects	on	how	to	become	more	effective,	then	tunes	and	
adjusts	its	behavior	accordingly.	 Agile Dev. Processes | Eric Knauss 21[Mey2014]

Agile Principles# Agile	Principle Comment

1 Our	highest	priority	is	to	satisfy	the	customer	through	early	and	continuous	delivery	of	
valuable	software.	

2 Welcome	changing	requirements,	even	late	in	development.	Agile	processes	harness	
change	for	the	customer's	competitive	advantage.	

3 Deliver	working	software	frequently,	from	a	couple	of	weeks	to	a	couple	of	months,	with	
a	preference	to	the	shorter	timescale.	

4 Business	people	and	developers	must	work	
together	daily	throughout	the	project.	

5 Build	projects	around	motivated	individuals.	Give	them	the	environment	and	support	
they	need,	and	trust	them	to	get	the	job	done.	

6 The	most	efficient	and	effective	method	of	conveying	information	to	and	within	a	
development	team	is	face-to-face	conversation.	

Practice

7 Working	software	is	the	primary	measure	of	progress.	

8 Agile	processes	promote	sustainable	development.	The	sponsors,	developers,	and	users	
should	be	able	to	maintain	a	constant	pace	indefinitely.	

9 Continuous	attention	to	technical	excellence	and	good	design	enhances	agility.	

10 Simplicity--the	art	of	maximizing	the	amount	of	work	not	done--is	essential.	

11 The	best	architectures,	requirements,	and	designs	emerge	from	self-organizing	teams.	

12 At	regular	intervals,	the	team	reflects	on	how	to	become	more	effective,	then	tunes	and	
adjusts	its	behavior	accordingly.	

Practice
Agile Dev. Processes | Eric Knauss 22[Mey2014]

Agile Principles# Agile	Principle Comment

1 Our	highest	priority	is	to	satisfy	the	customer	through	early	and	continuous	delivery	of	
valuable	software.	

2 Welcome	changing	requirements,	even	late	in	development.	Agile	processes	harness	
change	for	the	customer's	competitive	advantage.	

3 Deliver	working	software	frequently,	from	a	couple	of	weeks	to	a	couple	of	months,	with	
a	preference	to	the	shorter	timescale.	

4 Business	people	and	developers	must	work	
together	daily	throughout	the	project.	

5 Build	projects	around	motivated	individuals.	Give	them	the	environment	and	support	
they	need,	and	trust	them	to	get	the	job	done.	

Platitude

6 The	most	efficient	and	effective	method	of	conveying	information	to	and	within	a	
development	team	is	face-to-face	conversation.	

Practice

7 Working	software	is	the	primary	measure	of	progress.	

8 Agile	processes	promote	sustainable	development.	The	sponsors,	developers,	and	users	
should	be	able	to	maintain	a	constant	pace	indefinitely.	

9 Continuous	attention	to	technical	excellence	and	good	design	enhances	agility.	 Platitude

10 Simplicity--the	art	of	maximizing	the	amount	of	work	not	done--is	essential.	

11 The	best	architectures,	requirements,	and	designs	emerge	from	self-organizing	teams.	

12 At	regular	intervals,	the	team	reflects	on	how	to	become	more	effective,	then	tunes	and	
adjusts	its	behavior	accordingly.	

Practice
Agile Dev. Processes | Eric Knauss 23[Mey2014]

Agile Principles# Agile	Principle Comment

1 Our	highest	priority	is	to	satisfy	the	customer	through	early	and	continuous	delivery	of	
valuable	software.	

2 Welcome	changing	requirements,	even	late	in	development.	Agile	processes	harness	
change	for	the	customer's	competitive	advantage.	

3 Deliver	working	software	frequently,	from	a	couple	of	weeks	to	a	couple	of	months,	with	
a	preference	to	the	shorter	timescale.	

4 Business	people	and	developers	must	work	
together	daily	throughout	the	project.	

5 Build	projects	around	motivated	individuals.	Give	them	the	environment	and	support	
they	need,	and	trust	them	to	get	the	job	done.	

Platitude

6 The	most	efficient	and	effective	method	of	conveying	information	to	and	within	a	
development	team	is	face-to-face	conversation.	

Practice

7 Working	software	is	the	primary	measure	of	progress.	 Assertion

8 Agile	processes	promote	sustainable	development.	The	sponsors,	developers,	and	users	
should	be	able	to	maintain	a	constant	pace	indefinitely.	

9 Continuous	attention	to	technical	excellence	and	good	design	enhances	agility.	 Platitude

10 Simplicity--the	art	of	maximizing	the	amount	of	work	not	done--is	essential.	 Assertion

11 The	best	architectures,	requirements,	and	designs	emerge	from	self-organizing	teams.	

12 At	regular	intervals,	the	team	reflects	on	how	to	become	more	effective,	then	tunes	and	
adjusts	its	behavior	accordingly.	

Practice
Agile Dev. Processes | Eric Knauss 24

“Use	working	software	as	the	primary	measure	of	progress.”

“Seeking	simplicity”	=	ok;	“Maximizing	work	not	done”	=	ok;	but	two	principles

[Mey2014]

Agile Principles# Agile	Principle Comment

1 Our	highest	priority	is	to	satisfy	the	customer	through	early	and	continuous	delivery	of	
valuable	software.	

Duplicate
(3)

2 Welcome	changing	requirements,	even	late	in	development.	Agile	processes	harness	
change	for	the	customer's	competitive	advantage.	

3 Deliver	working	software	frequently,	from	a	couple	of	weeks	to	a	couple	of	months,	with	
a	preference	to	the	shorter	timescale.	

Duplicate	
(3,7)

4 Business	people	and	developers	must	work	
together	daily	throughout	the	project.	

5 Build	projects	around	motivated	individuals.	Give	them	the	environment	and	support	
they	need,	and	trust	them	to	get	the	job	done.	

Platitude

6 The	most	efficient	and	effective	method	of	conveying	information	to	and	within	a	
development	team	is	face-to-face	conversation.	

Practice

7 Working	software	is	the	primary	measure	of	progress.	 Assertion
Dupl.	(3)

8 Agile	processes	promote	sustainable	development.	The	sponsors,	developers,	and	users	
should	be	able	to	maintain	a	constant	pace	indefinitely.	

9 Continuous	attention	to	technical	excellence	and	good	design	enhances	agility.	 Platitude

10 Simplicity--the	art	of	maximizing	the	amount	of	work	not	done--is	essential.	 Assertion

11 The	best	architectures,	requirements,	and	designs	emerge	from	self-organizing	teams.	

12 At	regular	intervals,	the	team	reflects	on	how	to	become	more	effective,	then	tunes	and	
adjusts	its	behavior	accordingly.	

Practice
Agile Dev. Processes | Eric Knauss 25

“Use	working	software	as	the	primary	measure	of	progress.”

“Seeking	simplicity”	=	ok;	“Maximizing	work	not	done”	=	ok;	but	two	principles

Missing:	Testing [Mey2014]

Agile	Principles	– Revised	list	
(according	to	[Mey2014])

Organizational
1. Put	the	customer	at	the	center.
2. Let	the	team	self-organize.
3. Work	at	a	sustainable	pace.
4. Develop	minimal	software:

1. Produce	minimal	
functionality.

2. Produce	only	the	product	
requested.

3. Develop	only	code	and	tests.
5. Accept	Change

Agile Dev. Processes | Eric Knauss 26

Technical
1. Develop	iteratively:

1. Produce	frequent	working	
iterations.

2. Freeze	requirements	during	
iterations.

2. Treat	tests	as	a	key	resource:
1. Do	not	start	any	new	

development	until	all	tests	
pass.

2. Test	first.
3. Express	requirements	through	

scenarios.

Agile Roles
Role Description

Manager A	supporting	role	(“A	guru,	not	a	nanny!”)

Product	Owner Define and	maintain	the	product	backlog:	The	list	of	features.	
Before	dev.:	Explain	them.	
After	dev.:	Accept/reject	them

Team Takes	over	manager responsibilities	(incl:	deciding	what	tasks	to	
implement)

• Self-organized	 Optimize	intense	collaborations	within and	across	
organizational	boundaries	to	meet	challenges	as	they	arise.

• Cross-functional Team includes	all	necessary	skills	to	deliver	a	feature,	
independently	of	other	teams.

Members vs.	
Observers

Members should	dominate	discussions,	observers	should	offer	
opinions	when	asked	(c.f.	Chicken	and	Pigs)

Customer Central.	Constant	interaction	prescribed in	XP,	replaced	through
indirection	(Product	Owner)	in	Scrum.

Coach,	Scrum-
Master

Help	sticking	to	agile	values,	principles,	practices.	Main	
question:	dedicated role	or	not.

Agile Dev. Processes | Eric Knauss 27

[Mey2014]

One Agile Method: Extreme Programming

• Resonates well with our course
– Focus on developer

• 1st and 2nd Edition differ quite
significantly
– We stick to the first

• Today:
– Most important practices for this week

• Homework:
– Pick two of the practices, read up on

them, prepare to explain them in 1-2min

Agile Dev. Processes | Eric Knauss 28

Agile Methods: eXtreme Programming (XP)

• Extreme	programming:
– An	approach	based	on	the	development	and	delivery	of	very	small	

increments	of	functionality

– No	fine	grained	process	description,	but	12	practices	arranged	around	
short	development	circles	(4-6	weeks)

– “Turn-to-ten”	metaphor	(refers	to	volume	setting	of	older	amplifiers):
• Reviewing	is	good?	à Review	continuously:	Pair	Programming
• Early	Tests	are	good?	àWrite	tests	before	code:	Test-First
• Customer	interaction	is	good?	à Have	Onsite-Customer
• …

Agile Software Dev. | Eric Knauss 29

XP:

http://en.wikipedia.org/wiki/File:Extreme_Programming.svg

Agile Software Dev. | Eric Knauss 30

Continuous	process

Shared	understanding

Programmer	welfare

Feedback

XP Practices

Pair	Programming

Planning	game

Test-first
Onsite-Customer Continuous	integration

Refactoring

Small	releases

System	metaphor Simple	design

Collective	Code	Ownership

Coding	standards Sustainable	pace

Agile Software Dev. | Eric Knauss 31

Agile Principles and Practices

• Goal: Try them out in your project!

Mandatory Optional Comment

Planning	Game 1 0
Make	the	most	out	of	it.	Get	Emil's	Priorities	based	on	
your	effort	estimation.	Employ	customer	proxy

Small	Releases 1 0

Metaphor 0 1 Try	it	out!	But	we	will	not	check	whether	it	works.														

Simple	Design 1 0

Test-First 1 0 But	only	where	it	makes	sense.	Have	a	good	rationale!

Refactoring 1 0

Pair	Programming 0,5 0,5 Try	it	out.	Don't	necessarily	do	it	all	the	time.

Collective	Codeownership 2 0
Everybody	should	know	about	the	code.	Some	parts	more	
than	others

Continuous	Integration 1 0

Sustainable	Pace 1 0 But	also	not	too	slow!

Onsite	Customer 0,5 0,5Have	a	customer	proxy

Coding	standards 1 0Decide	on	them	and	try	to	have	tool	support

On-Site Customer

Agile Software Dev. | Eric Knauss 33

• Real customer in the room
– Answers all questions now (…and can revise answer

later)
– Customer proxy

• Answer now more important than answer
correct

“Students	have	to	interact	with	a	designated	On-Site	Customer	
who	is	available	full-time	to	answer	questions.”
• (+)	Block	course,	customer	interest

Planning Game

• Business people need to decide
– Scope, Priority, Composition of release,

dates of release
• Technical people need to decide

– Estimates, Consequences, Process, Detailed
scheduling

Agile Software Dev. | Eric Knauss 34

“Students	learn	how	to	divide	requirements	into	User	Stories	and	
how	to	prioritize	and	estimate	the	costs	of	these	stories.	While	
such	tasks	seem	to	be	easy	in	theory,	dealing	with	dependencies	in	
the	planning	game	is	normally	a	challenge	for	inexperienced	
developers	like	students.”
• (+)	More	iterations,	small	teams,	customer	interested,	technical	

support,	progress	feedback
• (-)	Longer	iterations

[SLK2008]

[Bec1999]

Continuous Integration

Agile Software Dev. | Eric Knauss 35

• Integrate and test code every few hours (1 day
at the most)

• Dedicated machine helps
– If Machine is free: pair sits down, integrates their

changes, tests, and does not leave before 100% of
tests run

“To	counter	conflicting	updates	to	the	code	base,	students	learn	to	
integrate	and	build	the	software	frequently.	”
• (+)	Block	course,	longer	iterations,	more	iterations,	small	team	

size

• (discovered	later:	technical	feedback)

Simple Design

Agile Software Dev. | Eric Knauss 36

• The right design at any given time
– Runs all the tests
– Has no duplicated logic
– States every intention important to the

programmers
– Has the fewest possible classes and methods

“Students	learn	the	benefits	of	simple	software	design	which	
improves	their	ability	to	change	the	system	quickly	and	
accommodate	it	to	changing	requirements.”
• (+)	More	iterations,	technical	support

Small releases

• Every release
– … should be as small as possible
– … should contain the most valuable business

requirements
– … has to make sense as a whole
– … should be delivered every 4-8 weeks (rather than

6-12 month)

Agile Software Dev. | Eric Knauss 37

“Students	learn	the	benefits	of	small	releases	that	already	offer	
value	to	the	customer	and	how	to	technically	put	a	system	into	
production	including	packaging.”
• (+)	More	iterations,	progress	feedback

Metaphor

Agile Software Dev. | Eric Knauss 38

• Examples
– Naïve: “Contract management system deals with

contracts, customers, and endorsements”
– “Computer should appear as a desktop”
– “Pension calculation is a spreadsheet”
– Align team thinking

“Students	learn	how	to	develop	a	metaphor	that	helps	every	team	
member	to	better	understand	how	the	whole	system	works.”
• (+)	Technical	support,	technical	feedback

Testing

Agile Software Dev. | Eric Knauss 39

• Any feature without automated test does not
exist
– Don’t write a test for every method
– Write a test for every productive method that could

possibly break
– “Program becomes more and more confident over

time”

“Students	learn	how	to	use	unit	test	frameworks	and	the	test-first	
approach	to	build	high	quality	software	and	to	recognize	the	
advantages	of	well-tested	code	when	making	changes.”
• (+)	More	iterations, technical	support,	technical	feedback

Refactoring

Agile Software Dev. | Eric Knauss 40

• Is there a way of changing the program to
make it easier to add a new feature?

• After adding the feature: Can we simplify the
design?

• Important investment!!!

“Students	learn	to	refactor	the	software	to	remove	duplication,	
improve	communication	and	simplify	the	code	base.	Especially	
refactoring	large	systems	can	be	troublesome	and	is	a	worthy	
experience	that	can	only	be	made	in	long	lasting	projects.”
• (+)	More	iterations, customer	interest,	technical	support

Pair Programming

Agile Software Dev. | Eric Knauss 41

• Driver: Has the keyboard, writes the code
• Navigator: Thinking strategically

– Will this work? Which test cases might not work?
Can we simplify?

“Students	learn	and	experience	the	principles	of	pair	
programming,	the	advantages	of	writing	software	with	a	partner	
and	the	social	challenges	that	are	associated.”
• (+)	Block	course,	small	team	size,	technical	support
• (-)	Long	iterations

Collective Code Ownership

Agile Software Dev. | Eric Knauss 42

• “Anybody who sees an opportunity to add
value to any portion of the code is required to
do so at any time.”
– No code ownership à Chaos
– Individual code ownership à Stable but slow

“Students	get	to	know	the	advantages	of	collective	code	
ownership	and	the	challenges	that	arise	with	parallel	updates	and	
changes	to	their	own	code	by	other	team	members.	”
• (+)	Block	course,	small	team	size

Sustainable pace (aka 40h week)

Agile Software Dev. | Eric Knauss 43

• Be fresh every morning, tired every night
• One week of overtime must not be followed by

another one

“In	contrast	to	normal	life	in	university,	students	experience	to	
work	continuously	for	40-hours	per	week	in	a	designated	team	
room.”
• (+)	Block	course

Coding Standards

Agile Software Dev. | Eric Knauss 44

• Swapping partners, changing concurrently all
parts of the code…

• Your code should better look consistently!
– Once and only once rule
– Emphasize communication
– Adopted by whole team

“Students	experience	the	importance	of	uniform	coding	
conventions	throughout	the	team	especially	when	combined	with	
collective	code	ownership.	”

References

Agile Dev. Processes | Eric Knauss 45

[SLK2008]

[Bec1999] Kent	Beck,	Extreme	Programming	Explained,	Addison-Wesley,	2ed,	2000

Kai	Stapel,	Daniel	Lübke,	Eric	Knauss:	Best	Practices	in	eXtreme
Programming	Course	Design.	In:	Proceedings	of	the	30th	International	
Conference	on	Software	Engineering	(ICSE	'08),	Leibzig,	Germany,	pg.	
769-776,	2008

