
Agile	vs.	Plan-driven

http://pixabay.com/en/tent-camping-camper-24500/

http://upload.wikimedia.org/wikipedia/commons/5/51/Gotic3d2.jpg

Agile	Software	Dev.	|	Eric	Knauss



Course	Objectives
Knowledge	and	
understanding

Skills	and	ability Judgement and	approach

Compare	agile	and	
traditional	softw.	dev,

Forming	a	team	organically Explain:	people/commun.
centric	dev.

Relate	lean	and	agile	
development

Collaborate in	small	
software	dev.	teams

Apply	fact:	people	drive	
project	success

Contrast different	agile	
methodologies

Interact and	show	progress	
continuously

Describe:	No	single	
methodology	fits	all

Use	the	agile	manifest	and	
its	accompanying	principles

Develop SW using	small	
and	frequent	iterations

Discuss:	methodology	
needs	to	adopt	to	culture	

Discuss	what	is	different
when	leading	an	agile	team

Use	test-driven	dev.	and	
automated	tests

Refactor	a	program/design

Be	member	of	agile	team

Incremental	planning	using	
user	stories

Sp
rin

t	1

Sp
rin

t	2

Sp
rin

t	3

Legend

Addressed

Open

Mainly	in	project

Focus	today



Motivation:	Agile	vs.	Plan-driven
• Some	history

– Software	crisis	(1968)
– Chaos	report	(Standish	group:	since	1994,	every	1-2	years)
– Similar	reports	(e.g.	recent	study	by	Forrester)

à Too	many	software	projects	(still)	fail!

• Success	factors:	
• End-user	involvement,	Top-Management	support,	clear	requirements

• Failure	factors:	
• No	End-user	involvement,	unclear	and	incomplete	requirements,	high	number	

of	requirements	changes

à Software	Engineering:	Systematic	/	repeatable	approaches	to	build	
software.



Waterfall model [Royce]

Iterations not confined to
successive steps

Royce,	1970:	http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf



The	“unknown”	part	of	the	waterfall



Waterfall	Model
• Phases

– Requirements	analysis	and	definition
– System	and	software	design
– Implementation	and	unit	testing
– Integration	and	system	testing
– Operation	and	maintenance

• Main	principle:	One	phase	has	to	be	completed	before	the	
next	phase	can	be	started

• Changes	are	hard	due	to	implied	dependencies	between	
artifacts	from	different	phases



Waterfall	Model
• Restrictions

– Customer’s	change	requests	cannot	be	adapted	easily	
by	the	ongoing	development	process

– The	process	should	only	be	applied	when	
requirements	are	pretty	complete,	well	understood	by	
all	stakeholders	(customer,	project	manager,	
developers,	testers,	…),	and	changes	are	not	expected

– Only	a	few	projects	fulfill	all	these	preconditions	at	
the	beginning

– Waterfall	model	is	used	for	large	engineering	projects,	
which	might	be	spread	over	several	development	sites



Requirements
Analysis

Architecture

Design

Implementation | Unit Test

Acceptance / 
Operational 

Testing

Integration 
Test

Component
Test

V-Model
Test	cases

Test	cases

Test	cases



V-Model
• Applicability

– Automotive	industry
– Governmental	projects
– Hierarchical	development	projects	with	subcontractors
– Large	engineering	projects	which	are	spread	over	several	
development	sites

• Restrictions
– Change	requests	due	to	modified	requirements	could	not	
be	adapted	easily

– Sequential	development
– Tayloring only	possible	with	V-Model	XT



Project	plan	(classical)
c.f.	IEEE	Std 729-1983

Defines	6	questions
• What	will	be	done
• Why
• For	how	much	money
• By	whom
• When
• With	what	resources	(Developmen-

and	Management-aids	and	-
techniques)

To	be	defined
• Responsibility	of	Project	Manager
• Necessary	tasks	(as	far	as	they	can	be	

known)
• Expected	results

– In	detail:	Software,	
Documentation,	
Servicesdetaillierter	

• E.g.	for	Doc.:	table	of	contents,	
intended	readers,	level	of	
detail

– Ideal:	Acceptance	criteria,	even	for	
Documents



Typical	problems	in	software	
development

Agile	Software	Dev.	|	Eric	Knauss 11

Software-Projects

Quality	
and

Maintainability

?Many late
Changes

Faster
Release-Cycles

Shorter
time-to-market



Field	of	Tension
Mature	processes

Disciplined	approach

Good	ability	to	react
Quick	and	flexible

Suitability	of	means
(Checklists,	Templates,	...)

low	overhead

Different	needs	and	priorities

Where	is	the	biggest	
utility	

for	a	company/project?

Improvement	in	one	area	
without	too	much	detoriation	in	others



Overview:	XP	and	Scrum

Agile	Dev.	Processes	|	Eric	Knauss 13

https://en.wikipedia.org/wiki/Scrum_(rugby)



What	is	different	in	agile?
• Observation:	Planning	has	limitations

• Therefore:	Fine-grained	plan	for	next	steps,	then	only	
coarse

• Precondition:	
Continuous	progress	control	
and	feedback

• Example	for	agile	“Micromanagement”:	SCRUM	

Plan	
fixed

Changed requirements
Plan
adjusted

Plan	frequently
adjusted

Agile	Software	Dev.	|	Eric	Knauss 14



Structure	of	agile	methods Generally

Agile	Software	Dev.	|	Eric	Knauss 15

Fundamental	values
„change	over plan“

Principles

Practices
(Implement.,
well	known)

lHighes	priority:	Customer	Satisfaction
nearly	and	continuous	delivery	of	valuable	software

nSimplicity
nAvoid	unnecessary	work

lEven	late	changes	are	welcome
nImply	improved	service	to	customer

l ...

lDirect	face-to-face	communication
nBest	way	to	exchange	information

lRegular	reflection	on	how	to	become	more	effective

nFeedback	on	several	levels



eXtreme	
Programming
• Practices

– Interact	and	support	each	other	
– Interplay	of	Process,	Testing,	and	Architectural	issues

Agile	Software	Dev.	|	Eric	Knauss 16

Architecture

Processes

Test

On-site	Customer

40	hour	week

Acceptance	Testing

Planning	Game
Metaphor

Refactoring

Simple	Design

Pair	Programming

Unit	Testing

Short	Releases

Continuous	Integration

Coding	Standards

Collective	Ownership



Processes	in	XP
based	on	Practices

Agile	Software	Dev.	|	Eric	Knauss 17

Small
Releases

next	iterationnew	user	stories

Concept
Acceptance
Tests

reqs.

Iteration
release	
plan

~2-3	weeks

c.f.	J.	Donovan	Wells,	Copyright	2000

OBS!	Many	practices	are	not	
shown	explicitly	in	this	model!

AGILE	HARD	TO	MODEL	AS	A	
PROCESS

estimates

Spike
(“Prototyp”)

Release	
Planning

System
Metaphor

User	Stories



SCRUM	Approach
• Basic	idea:	

– Bundle	requirements,	do	not	forward continuous changes of
requirements to team

– Changes:	often and appreciated – but	put a	Baseline	in	between

– SCRUM-Master	is a	buffer between interal and external stakeholders

– Daily	meetings facilitate direct communication

• After	initial phase:	Project	flows
– Self-facilitating on	informational and psychological level

• SCRUM	focusses on	essential	aspects
– Everything not	essential	can be decided by the team



How	much	planning	does	a	project	need?
Inspired	by	Barry	Boehm

Agile	Software	Dev.	|	Eric	Knauss 19

Fine	grained	Contracts
++	clear	basis	for	work
+			financial	security
- - very	high	effort
- - Changes	very	hard	

to	achieve



ad	hoc
+	low	planning	effort
+	individual	freedom
- - result	hard	to	anticipate
- - depending	on	“Hero”

Fine	grained	
Contracts

How	much	planning	does	a	project	need?
Inspired	by	Barry	Boehm

Agile	Software	Dev.	|	Eric	Knauss 20



Milestone	&	Plan	Driven
+	long	term	predictions
+	good	status	control
- - Changes	difficult
- - unrealistic	assumptions	

hard	to	eliminate
Fine	grained
Contractsad	hoc

How	much	planning	does	a	project	need?
Inspired	by	Barry	Boehm

Agile	Software	Dev.	|	Eric	Knauss 21



Milestone	and	Risk	Driven
++	active
+	Partial	results	early
- Hard:	long-term	planning
- Relatively	high	effort

Fine	grained
Contractsad	hoc

Milestone	&
Plan	Driven

How	much	planning	does	a	project	need?
Inspired	by	Barry	Boehm

Agile	Software	Dev.	|	Eric	Knauss 22



eXtreme Programming
+	Early	core	results
++	Changes	unproblematic
- Hard	to	do	in	large	projects
- Relies	on	self-discipline

Fine	grained
Contractsad	hoc

Milestone	&
Plan	Driven

Milestone	and	
Risk	Driven

How	much	planning	does	a	project	need?
Inspired	by	Barry	Boehm

Agile	Software	Dev.	|	Eric	Knauss 23



Agile	Methods

Fine	grained
Contractsad	hoc

Milestone	&
Plan	Driven

Milestone	and	
Risk	Driven

eXtreme
Programming

Agile	Example:	SCRUM
+	midterm	planning
+	quick	reaction
- Relies	on	team	qualification
- End-product	not	specified

Daily	SCRUM
+	SPRINT

Just	enough	planning
Inspired	by	Barry	Boehm

Agile	Software	Dev.	|	Eric	Knauss 24



Agile	thinking
 Traditional Agile 

Customer 
collaboration 

unlikely Critical success 
factor 

Delivery of 
something useful 

Only after some 
(longer) time 

At least every 6 
weeks 

Develop the right 
system by 

Thinking ahead, 
detailed specification 

Develop core, show, 
improve 

Required discipline formal, low  informal, high 
Changes Create resistance Are expected and 

tolerated 
Communication Via documents Face-to-face 

Prepare for 
changes 

By planning ahead By being flexible  
 

 

Agile	Software	Dev.	|	Eric	Knauss

Based on	Frühauf,
Conquest 2001

25



Introduce	agile	methods
• How	do	

– Line	managers
– Engineers	in	software	maintainance
– Customers

with	a	plan-driven	background	feel	if	you	propose	
agile?

• Beware!
– There	are	many	false	pretenses	and	excuses
– There	are	also	crucial	points	that	reoccur

• Whoever	offers	agile	methods	needs	to	take	
these	crucial	issues	very	seriously!



Agile	in	a	large	company?

Agile	Software	Dev.	|	Eric	Knauss 27

eBusiness? Bank?

Sales?

Safety-relevant
Software?

Internal	business
processes?

Web	applications?

?

Business	Processes

Embedded	Software

R&D?

Research?

(Serial-)	
Production?

Schneider,	K.	(2003):	SQM	congress	2003,	Köln,	SQS



Implications	of	agile	
(example	here:	XP)
„The	heart	of	Agile	Modeling	is	its	practices“ Scott	W.	Ambler

Unit	Test
Pair	Programming

Planning	Game,
Small	Releases	&	Incremental	Dev. On-site	customer

Sustainable	Pace

Refactoring

Collective	Code	Ownership

Continuous	Integration

Coding
StandardsSimple	Design

Agile	Software	Dev.	|	Eric	Knauss 28



Common	objections	

On	the	first	glance	...
– Working	in	pairs	is	a	waste	of	time
– Our	large	systems	do	not	allow	for	fast	releases
– Sustainable	pace?	I	don‘t	care,	we	have	a	35h	week!

More	serious
n Our	people	will	hate	collective	code	ownership	and	working	

in	pairs...

n Our	type	of	systems	do	not	allow	for	refactoring/cont.	
integration/test	first

General	Objections
n That is	nothing	new!	20	years	old

n This	does	not	work	here.

n We	are	already	doing	that	– I	mean	wild	hacking,	hahaha!

Schneider,	K.	(2003):	
SQM	congress	2003,	Köln,	SQS



Real	crucial	issues
Did	I	get	you	right?
- You	implement	without	knowing	what	we	want?
- You	want	a	customer	representative	on	site	

permanently?
- You	try	to	avoid documentation?
- You	want	to	make	work	for	you	as	simple	as	

possible?	What	about	QM?

Be	honest!
You	feel	anxious	because	so	
much	is	changing.
How	will	you	keep	the	
overview?	Or	would	you	prefer	
failing	in	a	proven	way	over	a	
risky	success?	

Schneider,	K.	(2003):	SQM	congress	2003,	
Köln,	SQS

Agile	Software	Dev.	|	Eric	Knauss 30



What	do	we	get?

• We	write	comprehensive	specifications	
so	that	we	know	what	we	get.	And	now?

• How	do	we	know	what	we	get	in	the	5th
increment?

• We	won’t	get	new	money	after	each	
increment!

• We	work	with	fixed-price	contrats.	Does	
this	work	here	as	well?

• Why	should	we	trust	this	agile	
contractor?

Agile	Software	Dev.	|	Eric	Knauss 31

• Not	any	more!
– Specifications	are	too	expensive	and	outdated	

while	being	written.	Yes,	uncertainty	remains.
• We	don’t	know,	we	assume

– Make	a	master	plan	and	change	it
– And:	we	are	not	stupid!

• Right;	apply	for	all	of	it	now.

• Yes:
– Based	on	exploration	phase
– Based	on	a	good	domain	description
– Simple	changes	without	changing	contract

• Based	on	good	experience	in	exploration	
phase

Schneider,	K.	(2003):	SQM	congress	
2003,	Köln,	SQS



On-Site	
Customer
• We	cannot	do	with	out	this	person!

• Several	business	units	are	part	of	this.	
The one	customer	does	not	exist!

• Nobody	can	know	all	business	units	in	
detail

• To	avoid	errors,	a	lot	of	coordination	is	
required

• Does	not	the	On-site	Customer	lose	
attachment	to	the	business	unit?

• Every	business	unit	representative	will	
will	favor	their unit

Agile	Software	Dev.	|	Eric	Knauss 32

• Fulltime	is	rare
– Sometimes	availability	on	the	phone	sufficient
– Consider	Customer	Proxy!	(below)

• You	need	to	define	one!
– (can	be	changed	later)

• No	need	to	know	all	the	details!
– Changes	are	possible,	errors	allowed
– Important:	Ability	to	decide	– without	

coordination

• Can	happen!	
– In	long	projects:	exchange!

• Customer	proxy	Concept
– Product	manager	plays	customer

Schneider,	K.	(2003):	SQM	congress	
2003,	Köln,	SQS



“Customer	Proxy”	Concept
• Developer	plays	“customer”

– Good	domain	knowledge
– Intensive	contact	with	developers
– Participates	in	coordination	of	sub-customers

Agile	Software	Dev.	|	Eric	Knauss 33

• Important
– Quick	decision	by	one	person
– Wrong	decisions	can	be	revised
– We	observed	this	in	industry	and	did	it	

ourselves:	It	works!

BU 1
Development
Team

BU 2

BU 3
Sub-customer 
coordination CP

PL

Client Contractor

Schneider,	K.	(2003):	SQM	congress	2003,	Köln,	SQS



QM,	Documentation	(etc.) and	internal	Rules

• Software	without	documentation	is	
useless

• Development	teams	change	– we	are	
lost	without	technical	documentation

• QM-handbooks	etc.	require	many	
documents,	reviews,	activities

– Shall	we	give	up	all	of	that?	
– Do	we	need	a	two-class	society?

• Can	agile	approaches	adhere	to	all	
these	rules	and	still	be	agile?

Agile	Software	Dev.	|	Eric	Knauss 34

• Right!
– If	you	need	it,	order	it	(and	pay	for	it!)

• Really?
– Even	with	the	generated	/	embedded	

documentation?
– If	yes:	order	it	and	loose	agility!

• Four-step	approach
1 Map	agile	activities	to	rules
2 Include	QM	unit
3 Negotiate	about	what	is	still	missing
4 Build	an	agile	variant	with	QM

• Not	if	you	take	it	all
– That	would	be	magic
– Travel	light:	Abandon	inefficient	parts
– Keep	all	agile	quality	aspects!

Schneider,	K.	(2003):	SQM	congress	
2003,	Köln,	SQS



Thanks!				(…and	optional	further	
reading)

Winston	W.	Royce:	
Managing	the	
Development	of	Large	
Software	Systems.	In:	
Proceedings	of	IEEE	
WESCON,	pages	1-9,	
1970

Kent	Beck:	Extreme	
Programming	
Explained.	Addison-
Wesley,	2000

Ken	Schwaber and	Mike	
Beedle:	Agile	Software	
Development	with	
Scrum,	Prentice	Hall,	
2002


