-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_harness.py
75 lines (58 loc) · 2.81 KB
/
eval_harness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import argparse
import json
from lm_eval import evaluator, tasks
from mesh_transformer.build_model import build_model
from tasks import EvalHarnessAdaptor
def parse_args():
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--tpu", type=str, help="Name of TPU to train on.")
parser.add_argument("--tpu_region", type=str, help="Region of TPU to train on.")
parser.add_argument("--preemptible", action="store_true")
parser.add_argument("--config", type=str, default=None, help="Config file location")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
params = json.load(open(args.config))
tpu_name = args.tpu
region = args.tpu_region
preemptible = args.preemptible
gradient_accumulation_steps = params.get("gradient_accumulation_steps", 1)
per_replica_batch = params["per_replica_batch"]
tpu_size = params["tpu_size"]
cores_per_replica = params["cores_per_replica"]
bucket = params["bucket"]
model_dir = params["model_dir"]
layers = params["layers"]
d_model = params["d_model"]
n_heads = params["n_heads"]
n_vocab = params["n_vocab"]
seq = params["seq"]
norm = params["norm"]
pe = params["pe"]
total_batch = per_replica_batch * tpu_size // cores_per_replica * 4
t = build_model(params, tpu_name, region, preemptible)
adaptor = EvalHarnessAdaptor(t, seq, total_batch, shrink=pe != "fixed")
step, aux = t.load(bucket, model_dir)
t.move()
results = evaluator.evaluate(adaptor, tasks.get_task_dict(["lambada",
"piqa",
"hellaswag",
"winogrande",
"mathqa",
"pubmedqa",
# "boolq",
# "cb",
# "copa",
# "multirc",
# "record",
# "wic",
# "wsc",
]), False, 0, None)
dumped = json.dumps(results, indent=2)
print(dumped)
results = evaluator.evaluate(adaptor, tasks.get_task_dict(["lambada_cloze",
]), False, 15, None)
dumped = json.dumps(results, indent=2)
print(dumped)