-
Notifications
You must be signed in to change notification settings - Fork 138
/
run_tokenflow_sdedit.py
285 lines (233 loc) · 13 KB
/
run_tokenflow_sdedit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import glob
import os
from pathlib import Path
import torch
import torch.nn as nn
import torchvision.transforms as T
import argparse
from PIL import Image
import yaml
from tqdm import tqdm
from transformers import logging
from diffusers import DDIMScheduler, StableDiffusionPipeline
import numpy as np
from tokenflow_utils import *
from util import save_video, seed_everything
# suppress partial model loading warning
logging.set_verbosity_error()
VAE_BATCH_SIZE = 10
# UNET_BATCH_SIZE = 5
class TokenFlow(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.device = config["device"]
sd_version = config["sd_version"]
if sd_version == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif sd_version == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif sd_version == '1.5':
model_key = "runwayml/stable-diffusion-v1-5"
else:
raise ValueError(f'Stable-diffusion version {sd_version} not supported.')
# Create SD models
print('Loading SD model')
pipe = StableDiffusionPipeline.from_pretrained(model_key, torch_dtype=torch.float16).to("cuda")
# pipe.enable_xformers_memory_efficient_attention()
self.vae = pipe.vae
self.tokenizer = pipe.tokenizer
self.text_encoder = pipe.text_encoder
self.unet = pipe.unet
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
self.scheduler.set_timesteps(config["n_timesteps"], device=self.device)
# start from the config["start"] * len(timesteps) timestep
self.scheduler.timesteps = self.scheduler.timesteps[int(1 - config["start"] * len(self.scheduler.timesteps)):]
print('SD model loaded')
# data
self.latents_path = self.get_latents_path()
self.keyframes_path = [os.path.join(config["data_path"], "%05d.jpg" % idx) for idx in
range(self.config["n_frames"])]
if not os.path.exists(self.keyframes_path[0]):
self.keyframes_path = [os.path.join(config["data_path"], "%05d.png" % idx) for idx in
range(self.config["n_frames"])]
# load frames
self.frames, self.latents, self.eps = self.get_data()
self.text_embeds = self.get_text_embeds(config["prompt"], config["negative_prompt"])
pnp_inversion_prompt = self.get_pnp_inversion_prompt()
self.pnp_guidance_embeds = self.get_text_embeds(pnp_inversion_prompt, pnp_inversion_prompt).chunk(2)[0]
def get_pnp_inversion_prompt(self):
inv_prompts_path = os.path.join(str(Path(self.latents_path).parent), 'inversion_prompt.txt')
# read inversion prompt
with open(inv_prompts_path, 'r') as f:
inv_prompt = f.read()
return inv_prompt
def get_latents_path(self):
latents_path = os.path.join(config["latents_path"], f'sd_{config["sd_version"]}',
Path(config["data_path"]).stem,)
latents_path = [x for x in glob.glob(f'{latents_path}/*/*') if not x.startswith('.')]
n_frames = [int([x for x in latents_path[i].split('/') if 'nframes' in x][0].split('_')[1]) for i in range(len(latents_path))]
latents_path = latents_path[np.argmax(n_frames)]
self.config["n_frames"] = min(max(n_frames), config["n_frames"])
if self.config["n_frames"] % self.config["batch_size"] != 0:
# make n_frames divisible by batch_size
self.config["n_frames"] = self.config["n_frames"] - (self.config["n_frames"] % self.config["batch_size"])
print(self.config["n_frames"])
return os.path.join(latents_path, 'latents')
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt, batch_size=1):
# Tokenize text and get embeddings
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
# Do the same for unconditional embeddings
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size)
return text_embeddings
@torch.no_grad()
def encode_imgs(self, imgs, batch_size=VAE_BATCH_SIZE, deterministic=False):
imgs = 2 * imgs - 1
latents = []
for i in range(0, len(imgs), batch_size):
posterior = self.vae.encode(imgs[i:i + batch_size]).latent_dist
latent = posterior.mean if deterministic else posterior.sample()
latents.append(latent * 0.18215)
latents = torch.cat(latents)
return latents
@torch.no_grad()
def decode_latents(self, latents, batch_size=VAE_BATCH_SIZE):
latents = 1 / 0.18215 * latents
imgs = []
for i in range(0, len(latents), batch_size):
imgs.append(self.vae.decode(latents[i:i + batch_size]).sample)
imgs = torch.cat(imgs)
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
def get_data(self):
# load frames
frames = [Image.open(self.keyframes_path[idx]).convert('RGB') for idx in range(self.config["n_frames"])]
if frames[0].size[0] == frames[0].size[1]:
frames = [frame.resize((512, 512), resample=Image.Resampling.LANCZOS) for frame in frames]
frames = torch.stack([T.ToTensor()(frame) for frame in frames]).to(torch.float16).to(self.device)
# encode to latents
latents = self.encode_imgs(frames, deterministic=True).to(torch.float16).to(self.device)
# get noise
eps = self.get_ddim_eps(latents, range(self.config["n_frames"])).to(torch.float16).to(self.device)
return frames, latents, eps
def get_ddim_eps(self, latent, indices):
noisest = max([int(x.split('_')[-1].split('.')[0]) for x in glob.glob(os.path.join(self.latents_path, f'noisy_latents_*.pt'))])
latents_path = os.path.join(self.latents_path, f'noisy_latents_{noisest}.pt')
noisy_latent = torch.load(latents_path)[indices].to(self.device)
alpha_prod_T = self.scheduler.alphas_cumprod[noisest]
mu_T, sigma_T = alpha_prod_T ** 0.5, (1 - alpha_prod_T) ** 0.5
eps = (noisy_latent - mu_T * latent) / sigma_T
return eps
@torch.no_grad()
def denoise_step(self, x, t, indices):
# register the time step and features in pnp injection modules
source_latents = load_source_latents_t(t, self.latents_path)[indices]
latent_model_input = torch.cat([source_latents] + ([x] * 2))
register_time(self, t.item())
# compute text embeddings
text_embed_input = torch.cat([self.pnp_guidance_embeds.repeat(len(indices), 1, 1),
torch.repeat_interleave(self.text_embeds, len(indices), dim=0)])
# apply the denoising network
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input)['sample']
# perform guidance
_, noise_pred_uncond, noise_pred_cond = noise_pred.chunk(3)
noise_pred = noise_pred_uncond + self.config["guidance_scale"] * (noise_pred_cond - noise_pred_uncond)
# compute the denoising step with the reference model
denoised_latent = self.scheduler.step(noise_pred, t, x)['prev_sample']
return denoised_latent
@torch.autocast(dtype=torch.float16, device_type='cuda')
def batched_denoise_step(self, x, t, indices):
batch_size = self.config["batch_size"]
denoised_latents = []
pivotal_idx = torch.randint(batch_size, (len(x)//batch_size,)) + torch.arange(0,len(x),batch_size) # [int(x) for x in torch.tensor((range(batch_size // 2, len(x) + batch_size // 2, batch_size)))]
register_pivotal(self, True)
self.denoise_step(x[pivotal_idx], t, indices[pivotal_idx])
register_pivotal(self, False)
for i, b in enumerate(range(0, len(x), batch_size)):
register_batch_idx(self, i)
denoised_latents.append(self.denoise_step(x[b:b + batch_size], t, indices[b:b + batch_size]))
denoised_latents = torch.cat(denoised_latents)
return denoised_latents
def init_method(self):
register_extended_attention(self)
set_tokenflow(self.unet)
def edit_video(self):
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True)
self.init_method()
noise = self.eps if config["use_ddim_noise"] else torch.randn_like(self.eps[[0]]).repeat(self.eps.shape[0])
noisy_latents = self.scheduler.add_noise(self.latents, noise, self.scheduler.timesteps[0])
edited_frames = self.sample_loop(noisy_latents, torch.arange(self.config["n_frames"]))
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_SDEdit_fps_10.mp4')
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_SDEdit_fps_20.mp4', fps=20)
save_video(edited_frames, f'{self.config["output_path"]}/tokenflow_SDEdit_fps_30.mp4', fps=30)
print('Done!')
def sample_loop(self, x, indices):
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True)
for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="Sampling")):
x = self.batched_denoise_step(x, t, indices)
decoded_latents = self.decode_latents(x)
for i in range(len(decoded_latents)):
T.ToPILImage()(decoded_latents[i]).save(f'{self.config["output_path"]}/img_ode/%05d.png' % i)
return decoded_latents
def per_frame_sde(self):
os.makedirs(f'{self.config["output_path"]}/img_ode', exist_ok=True)
noisy_latents = self.scheduler.add_noise(self.latents, self.eps, self.scheduler.timesteps[0])
edited_frames = self.vanilla_sample_loop(noisy_latents, torch.arange(self.config["n_frames"]))
save_video(edited_frames, f'{self.config["output_path"]}/vanilla_sde.mp4')
save_video(edited_frames, f'{self.config["output_path"]}/vanilla_sde_fps20.mp4', fps=20)
save_video(edited_frames, f'{self.config["output_path"]}/vanilla_sde_fps30.mp4', fps=30)
print('Done!')
def vanilla_denoise(self, batch, t, text_embed_input):
latent_model_input = torch.cat(([batch] * 2))
# apply the denoising network
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input)['sample']
# perform guidance
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.config["guidance_scale"] * (noise_pred_cond - noise_pred_uncond)
# compute the denoising step with the reference model
batch = self.scheduler.step(noise_pred, t, batch)['prev_sample']
return batch
def batch_vanilla_denoise_step(self, x, t, text_embed_input):
denoised = []
for b in range(0, len(x), self.config["batch_size"]):
denoised.append(self.vanilla_denoise(x[b:b + self.config["batch_size"]], t, text_embed_input))
x = torch.cat(denoised)
return x
@torch.no_grad()
def vanilla_sample_loop(self, x, indices):
os.makedirs(f'{self.config["output_path"]}/img_ode_vanilla_sde', exist_ok=True)
text_embed_input = torch.cat([torch.repeat_interleave(self.text_embeds, config["batch_size"], dim=0)])
for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="Sampling")):
x = self.batch_vanilla_denoise_step(x, t, text_embed_input)
decoded_latents = self.decode_latents(x)
for i in range(len(decoded_latents)):
T.ToPILImage()(decoded_latents[i]).save(f'{self.config["output_path"]}/img_ode_vanilla_sde/%05d.png' % i)
return decoded_latents
def run(config):
seed_everything(config["seed"])
print(config)
editor = TokenFlow(config)
editor.edit_video()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config_path', type=str, default='configs/config_sdedit.yaml')
opt = parser.parse_args()
with open(opt.config_path, "r") as f:
config = yaml.safe_load(f)
config["output_path"] = os.path.join(config["output_path"] + '_sdedit',
Path(config["data_path"]).stem,
config["prompt"][:240],
f'batch_size_{str(config["batch_size"])}',
str(config["n_timesteps"]) + f'start_{config["start"]}')
os.makedirs(config["output_path"], exist_ok=True)
with open(os.path.join(config["output_path"], "config.yaml"), "w") as f:
yaml.dump(config, f)
assert os.path.exists(config["data_path"]), "Data path does not exist"
run(config)