-
Notifications
You must be signed in to change notification settings - Fork 0
/
poverty_montreal.Rmd
262 lines (183 loc) · 8.3 KB
/
poverty_montreal.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
---
title: "Poverty and Social Inequality in Montreal Neighbourhoods according to 2016 Canada Census"
author: "Onat Ekinci"
date: "Mars 20, 2021"
output:
html_document:
keep_md: true
prettydoc::html_pretty:
theme: architect
highlight: github
bibliography: bibliography.json
---
```{r, echo = FALSE, message= FALSE, warning= FALSE}
knitr::opts_chunk$set(
echo = FALSE,
message = FALSE,
warning = FALSE,
cache = FALSE
)
library(tidyverse)
library(cansim)
library(cancensus)
library(cancensusHelpers)
library(sf)
library(dplyr)
library(ggplot2)
library(leaflet)
```
An exploratory analysis on poverty and social inequality in Montreal neighbourhoods. Tidyverse, Leaflet, SF, Cansim and Cancensus are the main packages used in the analysis.
#### SENIORS(65+) IN POVERTY (LICO-AT)
Low-income Cut-offs (LICOs) refer to an income threshold, below which economic families or persons would likely have spent a larger share of their income than average on the necessities of food, shelter and clothing[1]. More specifically, the thresholds represented income levels at which these families or persons were expected to spend 20 percentage points or more of their income than average on food, shelter and clothing.
There are two LICO income concepts:
The LICOs before-tax (LICO-BT) use total income while the LICOs after-tax (LICO-AT) use after-tax income.
The LICO-BT are based on the 1992 Family Expenditure Survey, which estimated that families spent 35% of total income on average on necessities of food, clothing and shelter. The LICO-BT thresholds were thus set to income levels where 55% of total income would be spent on these necessities. For the LICO-AT, it was estimated that families spent 43% of their after-tax income on average on necessities of food, clothing and shelter. The LICO-AT thresholds were thus set to income levels where 63% of after-tax income would be spent on these necessities.
LICO is the most established measure of poverty in Canada. It is the main poverty measure used by the federal government and is the most widely-used measure in general across Canada [2].
In the census LICO-AT values are represented as percentage values for [census tracts](https://www150.statcan.gc.ca/n1/pub/92-195-x/2011001/geo/ct-sr/def-eng.htm).
To create analyses for different geographic units you can go through the Wikipeadia page on [census geographic units of Canada](https://en.wikipedia.org/wiki/Census_geographic_units_of_Canada)
```{r, echo=TRUE}
mtl_lico_at_65<-get_census("CA16",regions=list(CSD="2466023"),vectors=c(lico_at="v_CA16_2582"), geo_format="sf",level="CT")
head(mtl_lico_at_65)
```
```{r, echo = FALSE}
mean_mtl_lico_at_65 <-mean(mtl_lico_at_65$lico_at, na.rm = TRUE)
max_mtl_lico_at_65 <-max(mtl_lico_at_65$lico_at, na.rm = TRUE)
min_mtl_lico_at_65 <-min(mtl_lico_at_65$lico_at, na.rm = TRUE)
```
Mean percentage value for seniors living below lico-at:
```{r}
mean_mtl_lico_at_65
```
Maximum percentage of seniors living below lico-at in a region:
```{r}
max_mtl_lico_at_65
```
Minimum percentage of seniors living below lico-at in a region:
```{r}
min_mtl_lico_at_65
```
```{r}
bins <-c(0.2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65)
pal <- colorBin("RdYlBu", domain = mtl_lico_at_65$lico_at, bins = bins, reverse = TRUE)
leaflet(mtl_lico_at_65, height=800, width=1000) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(fillColor = ~pal(lico_at),
color = "white",
weight = 1,
opacity = 1,
fillOpacity = 0.65) %>%
addLegend(pal = pal, values = ~density, opacity = 0.7, title = NULL,
position = "bottomright")
```
#### SENIORS(65+) IN POVERTY (LIM-AT)
The concept underlying the LIM is that all persons in a household have low income if their adjusted household income falls below half of the median adjusted income. The household income is adjusted by an equivalence scale to take economies of scale into account.
The LIM-AT is more an indicator of social inequality rather than that of poverty since it is a comparison. While LICO is Canada specific, LIM is used across all OECD countries.
```{r, echo = TRUE}
mtl_lim_at_65<-get_census("CA16",regions=list(CSD="2466023"),vectors=c(lim_at="v_CA16_2552"), geo_format="sf",level="DA")
```
```{r, echo = FALSE}
mean_mtl_lim_at_65 <-mean(mtl_lim_at_65$lim_at, na.rm = TRUE)
max_mtl_lim_at_65 <-max(mtl_lim_at_65$lim_at, na.rm = TRUE)
min_mtl_lim_at_65 <-min(mtl_lim_at_65$lim_at, na.rm = TRUE)
```
Mean percentage value for seniors lim-at:
```{r}
mean_mtl_lim_at_65
```
Max percentage value for seniors lim-at:
```{r}
max_mtl_lim_at_65
```
Min percentage value for seniors lim-at:
```{r}
min_mtl_lim_at_65
```
```{r}
bins <-c(0.2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70)
pal <- colorBin("RdYlBu", domain = mtl_lim_at_65$lim_at, bins = bins, reverse = TRUE)
leaflet(mtl_lim_at_65, height=800, width=1000) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(fillColor = ~pal(lim_at),
color = "white",
weight = 1,
opacity = 1,
fillOpacity = 0.65) %>%
addLegend(pal = pal, values = ~density, opacity = 0.7, title = NULL,
position = "bottomright")
```
#### CHILDREN(17<) IN POVERTY (LICO-AT)
```{r, echo = TRUE}
mtl<-get_census("CA16",regions=list(CSD="2466023"),geo_format="sf",level="CT")
mtl_lico_at_17<-get_census("CA16",regions=list(CSD="2466023"),vectors=c(lico_at="v_CA16_2573"), geo_format="sf",level="CT")
head(mtl_lico_at_17)
mean_mtl_lico_at_17 <-mean(mtl_lico_at_17$lico_at, na.rm = TRUE)
max_mtl_lico_at_17 <-max(mtl_lico_at_17$lico_at, na.rm = TRUE)
min_mtl_lico_at_17 <-min(mtl_lico_at_17$lico_at, na.rm = TRUE)
mean_mtl_lico_at_17
max_mtl_lico_at_17
min_mtl_lico_at_17
```
```{r }
bins <-c(0.2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 57)
pal <- colorBin("RdYlBu", domain = mtl_lico_at_17$lico_at, bins = bins, reverse = TRUE)
leaflet(mtl_lico_at_17, height=800, width=1000) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(fillColor = ~pal(lico_at),
color = "white",
weight = 1,
opacity = 1,
fillOpacity = 0.65) %>%
addLegend(pal = pal, values = ~density, opacity = 0.7, title = NULL,
position = "bottomright")
```
#### CHILDREN(17<) IN POVERTY (LIM-AT)
```{r, echo = TRUE}
mtl<-get_census("CA16",regions=list(CSD="2466023"),geo_format="sf",level="CT")
mtl_lim_at_17<-get_census("CA16",regions=list(CSD="2466023"),vectors=c(lim_at="v_CA16_2543"), geo_format="sf",level="CT")
head(mtl_lim_at_17)
mean_mtl_lim_at_17 <-mean(mtl_lim_at_17$lim_at, na.rm = TRUE)
max_mtl_lim_at_17 <-max(mtl_lim_at_17$lim_at, na.rm = TRUE)
min_mtl_lim_at_17 <-min(mtl_lim_at_17$lim_at, na.rm = TRUE)
mean_mtl_lim_at_17
max_mtl_lim_at_17
min_mtl_lim_at_17
```
```{r }
bins <-c(0.2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 72)
pal <- colorBin("RdYlBu", domain = mtl_lim_at_17$lim_at, bins = bins, reverse = TRUE)
leaflet(mtl_lim_at_17, height=800, width=1000) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(fillColor = ~pal(lim_at),
color = "white",
weight = 1,
opacity = 1,
fillOpacity = 0.65) %>%
addLegend(pal = pal, values = ~density, opacity = 0.7, title = NULL,
position = "bottomright")
```
```{r, echo = TRUE}
mtl<-get_census("CA16",regions=list(CSD="2466023"),geo_format="sf",level="CT")
dummy<-get_census("CA16",regions=list(CSD="2466023"),vectors=c(vec_int="v_CA16_2168"), geo_format="sf",level="CT")
head(dummy)
mean_mtl_int <-mean(dummy$vec_int, na.rm = TRUE)
max_mtl_int <-max(dummy$vec_int, na.rm = TRUE)
min_mtl_int <-min(dummy$vec_int, na.rm = TRUE)
mean_mtl_int
max_mtl_int
min_mtl_int
```
```{r }
pal <- colorBin("RdYlBu", domain = dummy$vec_int)
leaflet(dummy, height=800, width=1000) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(fillColor = ~pal(vec_int),
color = "white",
weight = 1,
opacity = 1,
fillOpacity = 0.65) %>%
addLegend(pal = pal, values = ~vec_int, opacity = 0.7, title = NULL,
position = "bottomright")
```
### REFERENCES:
1. Low income definitions, [Statistics Canada](https://www150.statcan.gc.ca/n1/pub/75f0011x/2012001/notes/low-faible-eng.htm)
2. How do we measure poverty? Hannah Aldridge, Maytree Foundation, 2017