-
Notifications
You must be signed in to change notification settings - Fork 0
/
kalman.js
66 lines (56 loc) · 2.3 KB
/
kalman.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
// === Kalman ===
// Kalman filter for Javascript
// Copyright (c) 2012 Itamar Weiss
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
var Kalman = {
version: '0.0.1'
};
KalmanModel = (function(){
function KalmanModel(x_0,P_0,F_k,Q_k){
this.x_k = x_0;
this.P_k = P_0;
this.F_k = F_k;
this.Q_k = Q_k;
}
KalmanModel.prototype.update = function(o){
this.I = Matrix.I(this.P_k.rows());
//init
this.x_k_ = this.x_k;
this.P_k_ = this.P_k;
//Predict
this.x_k_k_ = this.F_k.x(this.x_k_);//F=A 状态转移矩阵
this.P_k_k_ = this.F_k.x(this.P_k_.x(this.F_k.transpose())).add(this.Q_k);
//update
this.y_k = o.z_k.subtract(o.H_k.x(this.x_k_k_));//observation residual
this.S_k = o.H_k.x(this.P_k_k_.x(o.H_k.transpose())).add(o.R_k);//residual covariance
this.K_k = this.P_k_k_.x(o.H_k.transpose().x(this.S_k.inverse()));//Optimal Kalman gain
this.x_k = this.x_k_k_.add(this.K_k.x(this.y_k));//yk=zk-H*xk
this.P_k = this.I.subtract(this.K_k.x(o.H_k)).x(this.P_k_k_);
};
return KalmanModel;
})();
KalmanObservation = (function(){
function KalmanObservation(z_k,H_k,R_k){
this.z_k = z_k;//observation
this.H_k = H_k;//observation model
this.R_k = R_k;//observation noise covariance
}
return KalmanObservation;
})();