Skip to content

Commit

Permalink
add new dataset summerizer (#1758)
Browse files Browse the repository at this point in the history
add new dataset summerizer
  • Loading branch information
zhulinJulia24 authored Dec 13, 2024
1 parent a1c00cc commit aeded4c
Show file tree
Hide file tree
Showing 4 changed files with 198 additions and 1 deletion.
2 changes: 2 additions & 0 deletions opencompass/datasets/subjective/compassbench_checklist.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
from datasets import Dataset

from opencompass.registry import LOAD_DATASET
from opencompass.utils import get_data_path

from ..base import BaseDataset

Expand All @@ -13,6 +14,7 @@
class CompassBenchCheklistDataset(BaseDataset):

def load(self, path: str, name: str, *args, **kwargs):
path = get_data_path(path, local_mode=True)
filename = osp.join(path, f'{name}.json')
raw_data = []
with open(filename, 'r', encoding='utf-8') as f:
Expand Down
1 change: 1 addition & 0 deletions opencompass/summarizers/subjective/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,5 +15,6 @@
from .mtbench import MTBenchSummarizer
from .mtbench101 import MTBench101Summarizer
from .multiround import MultiroundSummarizer
from .qacompassbench import QaCompassBenchSummarizer
from .subjective import SubjectiveSummarizer
from .wildbench import WildBenchPairSummarizer, WildBenchSingleSummarizer
189 changes: 189 additions & 0 deletions opencompass/summarizers/subjective/qacompassbench.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@
# flake8: noqa
# yapf: disable
import csv
import os
import os.path as osp
import re
from collections import defaultdict
from datetime import datetime
from itertools import product

import pandas as pd
from mmengine import ConfigDict

from opencompass.partitioners.sub_naive import remove_duplicate_pairs
from opencompass.summarizers.subjective.utils import (
get_judgeanswer_and_reference, get_outdir)
from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg


def post_process_wildbench_pair(judgement: str):
pattern = r'\"choice\": \"(.*?)\"'
matched_result = re.findall(pattern, judgement)
if matched_result:
return matched_result[0]
else:
return None



class QaCompassBenchSummarizer:
"""Do the subjectivity analyze based on evaluation results.
Args:
config (ConfigDict): The configuration object of the evaluation task.
It's expected to be filled out at runtime.
"""

def __init__(self, config: ConfigDict, check_pos_bias=False) -> None:
self.tasks = []
self.cfg = config
self.base_models = self.cfg['datasets'][0]['base_models']
self.compare_models = self.cfg['eval']['partitioner']['models']
self.judge_models = self.cfg.get('judge_models', None)
self.meta_judge_model = self.cfg.eval.partitioner.get(
'meta_judge_model', None)
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_models'][0])
self.judge_function = post_process_wildbench_pair
self.check_pos_bias = check_pos_bias

def get_score(self, time_str):
output_dir, results_folder = get_outdir(self.cfg, time_str)
model_combinations = list(
product(self.base_models, self.compare_models))
unique_combinations = remove_duplicate_pairs(
[combo for combo in model_combinations if combo[0] != combo[1]])

if self.meta_judge_model is not None:
self.judge_models.append(self.meta_judge_model)

scores = {}
for idx, judge_model_cfg in enumerate(self.judge_models):
judge_model = model_abbr_from_cfg(judge_model_cfg)
scores[judge_model] = {}
for dataset in self.cfg['datasets']:
dataset_abbr = dataset_abbr_from_cfg(dataset)
dataset_root, dataset_detail = (
dataset_abbr.split('/')[0],
dataset_abbr.split('/')[1],
)
scores[judge_model][dataset_abbr] = {}
for model_pair in unique_combinations:
base_model = model_pair[0]['abbr']
compare_model = model_pair[1]['abbr']
if idx == len(self.judge_models):
subdir = (base_model + '_' + compare_model +
'_summarized-by--' + judge_model)
else:
subdir = (base_model + '_' + compare_model +
'_judged-by--' + judge_model)
subdir_path = os.path.join(results_folder, subdir)
if not os.path.isdir(subdir_path):
print(subdir_path + ' is not exist! please check!')
scores[judge_model][dataset_abbr][compare_model] = None
continue

judged_answers, references = get_judgeanswer_and_reference(
dataset, subdir_path, self.judge_function)
win_base_model = defaultdict(float)
win_compare_model = defaultdict(float)
score_mapping = {
'A++': 1,
'A+': 0.5,
'A=B': 0,
'B+': -0.5,
'B++': -1,
}
cnt = defaultdict(float)
for judged_answer, reference in zip(
judged_answers, references):
if judged_answer not in score_mapping:
continue
else:
flag = (1 if reference['answer1'] == base_model
else -1)
score_1 = score_mapping[judged_answer] * flag
score_2 = -score_1
cnt[reference['category']] += 1
win_compare_model[reference['category']] += score_2
win_base_model[reference['category']] += score_1
cnt[dataset_abbr] += 1
win_compare_model[dataset_abbr] += score_2
win_base_model[dataset_abbr] += score_1
for key, value in cnt.items():
# print(key , value)
win_base_model[key] = win_base_model[key] / value * 100
win_base_model[key] = round(win_base_model[key], 2)
win_compare_model[key] = (win_compare_model[key] /
value * 100)
win_compare_model[key] = round(win_compare_model[key],
2)

scores[judge_model][dataset_abbr][
compare_model] = win_compare_model

return scores


def summarize(
self,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
):
"""Summarize the subjectivity analysis based on evaluation results.
Args:
time_str (str): Timestamp for file naming.
Returns:
pd.DataFrame: The summary results.
"""
scores = self.get_score(time_str)
output_dir, results_folder = get_outdir(self.cfg, time_str)
json_result={}
for judge_abbr, judge_scores in scores.items():
if judge_abbr not in json_result:
json_result[judge_abbr] = {}
new_score = {}
items = []
for dataset_name, model_scores in judge_scores.items():
if dataset_name not in new_score:
new_score[dataset_name] = {}
for model_name, cate_score in model_scores.items():
for category, score in cate_score.items():
items.append(category)
if category not in new_score:
new_score[category] = {}
if model_name not in new_score[category]:
new_score[category][model_name] = {}
new_score[category][model_name]['总分'] = score
if model_name not in json_result[judge_abbr]:
json_result[judge_abbr][model_name] = {}
json_result[judge_abbr][model_name][category] = score

df = pd.DataFrame()
# Iterate over the MAP and new_score to populate the DataFrame
for category in items:
category_data = []
for model, scores in new_score[category].items():
row_data = [model]
# Append the score if available, otherwise append None
row_data.append(scores.get('总分', None))
category_data.append(row_data)

# Create a DataFrame for the category and concatenate with the main DataFrame
new_headers = [category + '_' + item for item in ['总分']]
category_df = pd.DataFrame(category_data,
columns=[category] + new_headers)
df = pd.concat([df, category_df.set_index(category)], axis=1)

df_transposed = df.T

output_filename = osp.join(
output_dir,
'summarized-by--' + judge_abbr + '-' + '-report.csv',
)

transposed_csv_file_path = output_filename
df_transposed.to_csv(transposed_csv_file_path)
print(f'save to {output_filename}')
return {'qabench': json_result}
7 changes: 6 additions & 1 deletion opencompass/utils/datasets_info.py
Original file line number Diff line number Diff line change
Expand Up @@ -377,7 +377,12 @@
"ms_id": "",
"hf_id": "",
"local": "./data/bigcodebench/",
}
},
"opencompass/qabench": {
"ms_id": "",
"hf_id": "",
"local": "./data/qabench",
},
}

DATASETS_URL = {
Expand Down

0 comments on commit aeded4c

Please sign in to comment.