-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
53 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
#include "pytorch_npu_helper.hpp" | ||
|
||
using namespace NPU_NAME_SPACE; | ||
using namespace std; | ||
|
||
void border_align_forward_impl(const Tensor &input, const Tensor &boxes, Tensor output, | ||
Tensor argmax_idx, const int pool_size); | ||
|
||
void border_align_forward_npu(const Tensor &input, const Tensor &boxes, Tensor output, | ||
Tensor argmax_idx, const int pool_size){ | ||
TORCH_CHECK(input.size(0) == boxes.size(0), "The batch sizes of feature map and rois must be the same."); | ||
TORCH_CHECK(input.size(1) % 4 == 0, "The number of channels must be divisible by 4."); | ||
TORCH_CHECK(pool_size >= 2, "The pool size should be larger than 2."); | ||
int32_t batch_size = input.size(0); | ||
int32_t channels = input.size(1); | ||
int32_t height = input.size(2); | ||
int32_t width = input.size(3); | ||
at::Tensor feature_map = input.permute({0, 2, 3, 1}).contiguous(); | ||
at::Tensor rois_map = boxes.contiguous(); | ||
at::Tensor temp_tensor = at::zeros({batch_size, height * width, pool_size + 1, channels}, input.options()); | ||
EXEC_NPU_CMD(aclnnBorderAlign, feature_map, rois_map, pool_size, temp_tensor); | ||
auto max_result = temp_tensor.max(-2); | ||
at::Tensor output_ = std::get<0>(max_result).to(at::kFloat); | ||
output_ = output_.reshape({batch_size, height * width, 4, channels / 4}).permute({0, 3, 1, 2}).contiguous(); | ||
output.copy_(output_); | ||
at::Tensor argmax_idx_ = std::get<1>(max_result).to(at::kInt); | ||
argmax_idx_ = argmax_idx_.reshape({batch_size, height * width, 4, channels / 4}).permute({0, 3, 1, 2}).contiguous(); | ||
argmax_idx.copy_(argmax_idx_); | ||
} | ||
REGISTER_NPU_IMPL(border_align_forward_impl, border_align_forward_npu); | ||
|
||
|
||
void border_align_backward_impl(const Tensor &grad_output, const Tensor &boxes, | ||
const Tensor &argmax_idx, Tensor grad_input, | ||
const int pool_size); | ||
|
||
void border_align_backward_npu(const Tensor &grad_output, const Tensor &boxes, | ||
const Tensor &argmax_idx, Tensor grad_input, | ||
const int pool_size){ | ||
TORCH_CHECK(grad_output.dim() == 4, "grad_out.dim() must be 4, but got: ", grad_output.dim()); | ||
TORCH_CHECK(boxes.dim() == 3, "idx.dim() must be 3, but got: ", boxes.dim()); | ||
TORCH_CHECK(argmax_idx.dim() == 4, "argmax_idx.dim() must be 4, but got: ", argmax_idx.dim()); | ||
|
||
int32_t batch_size = grad_output.size(0); | ||
int32_t feat_channels = grad_output.size(1) * 4; | ||
int32_t channels = grad_output.size(1); | ||
int32_t box_size = boxes.size(1); | ||
int32_t height = grad_input.size(2); | ||
int32_t width = grad_input.size(3); | ||
|
||
EXEC_NPU_CMD(aclnnBorderAlignGrad, grad_output, boxes, argmax_idx, channels, box_size, height, width, pool_size, batch_size, grad_input); | ||
} | ||
REGISTER_NPU_IMPL(border_align_backward_impl, border_align_backward_npu); |