Skip to content

Commit

Permalink
fix lint
Browse files Browse the repository at this point in the history
  • Loading branch information
hust17yixuan committed Dec 3, 2024
1 parent 7b477b2 commit d6d280a
Showing 1 changed file with 37 additions and 37 deletions.
74 changes: 37 additions & 37 deletions mmcv/ops/csrc/pytorch/npu/border_align_npu.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -10,32 +10,32 @@ void border_align_forward_impl(const Tensor &input, const Tensor &boxes,
void border_align_forward_npu(const Tensor &input, const Tensor &boxes,
Tensor output, Tensor argmax_idx,
const int pool_size) {
TORCH_CHECK(input.size(0) == boxes.size(0),
"The batch sizes of feature map and rois must be the same.");
TORCH_CHECK(input.size(1) % 4 == 0,
"The number of channels must be divisible by 4.");
TORCH_CHECK(pool_size >= 2, "The pool size should be larger than 2.");
int32_t batch_size = input.size(0);
int32_t channels = input.size(1);
int32_t height = input.size(2);
int32_t width = input.size(3);
at::Tensor feature_map = input.permute({0, 2, 3, 1}).contiguous();
at::Tensor rois_map = boxes.contiguous();
at::Tensor temp_tensor = at::zeros(
{batch_size, height * width, pool_size + 1, channels}, input.options());
EXEC_NPU_CMD(aclnnBorderAlign, feature_map, rois_map, pool_size, temp_tensor);
auto max_result = temp_tensor.max(-2);
at::Tensor output_ = std::get<0>(max_result).to(at::kFloat);
output_ = output_.reshape({batch_size, height * width, 4, channels / 4})
.permute({0, 3, 1, 2})
.contiguous();
output.copy_(output_);
at::Tensor argmax_idx_ = std::get<1>(max_result).to(at::kInt);
argmax_idx_ =
argmax_idx_.reshape({batch_size, height * width, 4, channels / 4})
.permute({0, 3, 1, 2})
.contiguous();
argmax_idx.copy_(argmax_idx_);
TORCH_CHECK(input.size(0) == boxes.size(0),
"The batch sizes of feature map and rois must be the same.");
TORCH_CHECK(input.size(1) % 4 == 0,
"The number of channels must be divisible by 4.");
TORCH_CHECK(pool_size >= 2, "The pool size should be larger than 2.");
int32_t batch_size = input.size(0);
int32_t channels = input.size(1);
int32_t height = input.size(2);
int32_t width = input.size(3);
at::Tensor feature_map = input.permute({0, 2, 3, 1}).contiguous();
at::Tensor rois_map = boxes.contiguous();
at::Tensor temp_tensor = at::zeros(
{batch_size, height * width, pool_size + 1, channels}, input.options());
EXEC_NPU_CMD(aclnnBorderAlign, feature_map, rois_map, pool_size, temp_tensor);
auto max_result = temp_tensor.max(-2);
at::Tensor output_ = std::get<0>(max_result).to(at::kFloat);
output_ = output_.reshape({batch_size, height * width, 4, channels / 4})
.permute({0, 3, 1, 2})
.contiguous();
output.copy_(output_);
at::Tensor argmax_idx_ = std::get<1>(max_result).to(at::kInt);
argmax_idx_ =
argmax_idx_.reshape({batch_size, height * width, 4, channels / 4})
.permute({0, 3, 1, 2})
.contiguous();
argmax_idx.copy_(argmax_idx_);
}
REGISTER_NPU_IMPL(border_align_forward_impl, border_align_forward_npu);

Expand All @@ -47,18 +47,18 @@ void border_align_backward_impl(const Tensor &grad_output, const Tensor &boxes,
void border_align_backward_npu(const Tensor &grad_output, const Tensor &boxes,
const Tensor &argmax_idx, Tensor grad_input,
const int pool_size) {
TORCH_CHECK(grad_output.dim() == 4,
"grad_out.dim() must be 4, but got: ", grad_output.dim());
TORCH_CHECK(boxes.dim() == 3, "idx.dim() must be 3, but got: ", boxes.dim());
TORCH_CHECK(argmax_idx.dim() == 4,
"argmax_idx.dim() must be 4, but got: ", argmax_idx.dim());
TORCH_CHECK(grad_output.dim() == 4,
"grad_out.dim() must be 4, but got: ", grad_output.dim());
TORCH_CHECK(boxes.dim() == 3, "idx.dim() must be 3, but got: ", boxes.dim());
TORCH_CHECK(argmax_idx.dim() == 4,
"argmax_idx.dim() must be 4, but got: ", argmax_idx.dim());

int32_t batch_size = grad_output.size(0);
int32_t feat_channels = grad_output.size(1) * 4;
int32_t channels = grad_output.size(1);
int32_t box_size = boxes.size(1);
int32_t height = grad_input.size(2);
int32_t width = grad_input.size(3);
int32_t batch_size = grad_output.size(0);
int32_t feat_channels = grad_output.size(1) * 4;
int32_t channels = grad_output.size(1);
int32_t box_size = boxes.size(1);
int32_t height = grad_input.size(2);
int32_t width = grad_input.size(3);

EXEC_NPU_CMD(aclnnBorderAlignGrad, grad_output, boxes, argmax_idx, channels,
box_size, height, width, pool_size, batch_size, grad_input);
Expand Down

0 comments on commit d6d280a

Please sign in to comment.