-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py
137 lines (132 loc) · 4.6 KB
/
hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-car.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
_base_ = './hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py'
point_cloud_range = [0, -40, -3, 70.4, 40, 1] # velodyne coordinates, x, y, z
model = dict(
rpn_head=dict(
type='PartA2RPNHead',
num_classes=1,
anchor_generator=dict(
_delete_=True,
type='Anchor3DRangeGenerator',
ranges=[[0, -40.0, -1.78, 70.4, 40.0, -1.78]],
sizes=[[1.6, 3.9, 1.56]],
rotations=[0, 1.57],
reshape_out=False)),
roi_head=dict(
num_classes=1,
semantic_head=dict(num_classes=1),
bbox_head=dict(num_classes=1)),
# model training and testing settings
train_cfg=dict(
_delete_=True,
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=9000,
nms_post=512,
max_num=512,
nms_thr=0.8,
score_thr=0,
use_rotate_nms=False),
rcnn=dict(
assigner=dict( # for Car
type='MaxIoUAssigner',
iou_calculator=dict(type='BboxOverlaps3D', coordinate='lidar'),
pos_iou_thr=0.55,
neg_iou_thr=0.55,
min_pos_iou=0.55,
ignore_iof_thr=-1),
sampler=dict(
type='IoUNegPiecewiseSampler',
num=128,
pos_fraction=0.55,
neg_piece_fractions=[0.8, 0.2],
neg_iou_piece_thrs=[0.55, 0.1],
neg_pos_ub=-1,
add_gt_as_proposals=False,
return_iou=True),
cls_pos_thr=0.75,
cls_neg_thr=0.25)),
test_cfg=dict(
rpn=dict(
nms_pre=1024,
nms_post=100,
max_num=100,
nms_thr=0.7,
score_thr=0,
use_rotate_nms=True),
rcnn=dict(
use_rotate_nms=True,
use_raw_score=True,
nms_thr=0.01,
score_thr=0.1)))
# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car']
input_modality = dict(use_lidar=True, use_camera=False)
db_sampler = dict(
data_root=data_root,
info_path=data_root + 'kitti_dbinfos_train.pkl',
rate=1.0,
prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)),
classes=class_names,
sample_groups=dict(Car=15))
train_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='ObjectSample', db_sampler=db_sampler),
dict(
type='ObjectNoise',
num_try=100,
translation_std=[1.0, 1.0, 0.5],
global_rot_range=[0.0, 0.0],
rot_range=[-0.78539816, 0.78539816]),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05]),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
])
]
data = dict(
train=dict(dataset=dict(pipeline=train_pipeline, classes=class_names)),
val=dict(pipeline=test_pipeline, classes=class_names),
test=dict(pipeline=test_pipeline, classes=class_names))
find_unused_parameters = True