-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py
116 lines (109 loc) · 3.98 KB
/
hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
_base_ = [
'../_base_/models/hv_pointpillars_secfpn_kitti.py',
'../_base_/datasets/kitti-3d-3class.py',
'../_base_/schedules/cyclic_40e.py', '../_base_/default_runtime.py'
]
point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1]
# dataset settings
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
# PointPillars adopted a different sampling strategies among classes
file_client_args = dict(backend='disk')
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# file_client_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/kitti/':
# 's3://openmmlab/datasets/detection3d/kitti/',
# 'data/kitti/':
# 's3://openmmlab/datasets/detection3d/kitti/'
# }))
db_sampler = dict(
data_root=data_root,
info_path=data_root + 'kitti_dbinfos_train.pkl',
rate=1.0,
prepare=dict(
filter_by_difficulty=[-1],
filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)),
classes=class_names,
sample_groups=dict(Car=15, Pedestrian=15, Cyclist=15),
points_loader=dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
file_client_args=file_client_args),
file_client_args=file_client_args)
# PointPillars uses different augmentation hyper parameters
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
file_client_args=file_client_args),
dict(
type='LoadAnnotations3D',
with_bbox_3d=True,
with_label_3d=True,
file_client_args=file_client_args),
dict(type='ObjectSample', db_sampler=db_sampler, use_ground_plane=True),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05]),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
file_client_args=file_client_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
])
]
data = dict(
train=dict(dataset=dict(pipeline=train_pipeline, classes=class_names)),
val=dict(pipeline=test_pipeline, classes=class_names),
test=dict(pipeline=test_pipeline, classes=class_names))
# In practice PointPillars also uses a different schedule
# optimizer
lr = 0.001
optimizer = dict(lr=lr)
# max_norm=35 is slightly better than 10 for PointPillars in the earlier
# development of the codebase thus we keep the setting. But we does not
# specifically tune this parameter.
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# PointPillars usually need longer schedule than second, we simply double
# the training schedule. Do remind that since we use RepeatDataset and
# repeat factor is 2, so we actually train 160 epochs.
runner = dict(max_epochs=80)
# Use evaluation interval=2 reduce the number of evaluation timese
evaluation = dict(interval=2)