-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
test_heads.py
1726 lines (1520 loc) · 63.4 KB
/
test_heads.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import random
from os.path import dirname, exists, join
import mmcv
import numpy as np
import pytest
import torch
from mmdet3d.core.bbox import (Box3DMode, CameraInstance3DBoxes,
DepthInstance3DBoxes, LiDARInstance3DBoxes)
from mmdet3d.models.builder import build_head
from mmdet.apis import set_random_seed
def _setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def _get_config_directory():
"""Find the predefined detector config directory."""
try:
# Assume we are running in the source mmdetection3d repo
repo_dpath = dirname(dirname(dirname(dirname(__file__))))
except NameError:
# For IPython development when this __file__ is not defined
import mmdet3d
repo_dpath = dirname(dirname(mmdet3d.__file__))
config_dpath = join(repo_dpath, 'configs')
if not exists(config_dpath):
raise Exception('Cannot find config path')
return config_dpath
def _get_config_module(fname):
"""Load a configuration as a python module."""
from mmcv import Config
config_dpath = _get_config_directory()
config_fpath = join(config_dpath, fname)
config_mod = Config.fromfile(config_fpath)
return config_mod
def _get_head_cfg(fname):
"""Grab configs necessary to create a bbox_head.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg))
test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg))
bbox_head = model.bbox_head
bbox_head.update(train_cfg=train_cfg)
bbox_head.update(test_cfg=test_cfg)
return bbox_head
def _get_rpn_head_cfg(fname):
"""Grab configs necessary to create a rpn_head.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg))
test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg))
rpn_head = model.rpn_head
rpn_head.update(train_cfg=train_cfg.rpn)
rpn_head.update(test_cfg=test_cfg.rpn)
return rpn_head, train_cfg.rpn_proposal
def _get_roi_head_cfg(fname):
"""Grab configs necessary to create a roi_head.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg))
test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg))
roi_head = model.roi_head
roi_head.update(train_cfg=train_cfg.rcnn)
roi_head.update(test_cfg=test_cfg.rcnn)
return roi_head
def _get_pts_bbox_head_cfg(fname):
"""Grab configs necessary to create a pts_bbox_head.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg.pts))
test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg.pts))
pts_bbox_head = model.pts_bbox_head
pts_bbox_head.update(train_cfg=train_cfg)
pts_bbox_head.update(test_cfg=test_cfg)
return pts_bbox_head
def _get_pointrcnn_rpn_head_cfg(fname):
"""Grab configs necessary to create a rpn_head.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg))
test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg))
rpn_head = model.rpn_head
rpn_head.update(train_cfg=train_cfg.rpn)
rpn_head.update(test_cfg=test_cfg.rpn)
return rpn_head, train_cfg.rpn
def _get_vote_head_cfg(fname):
"""Grab configs necessary to create a vote_head.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg))
test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg))
vote_head = model.bbox_head
vote_head.update(train_cfg=train_cfg)
vote_head.update(test_cfg=test_cfg)
return vote_head
def _get_parta2_bbox_head_cfg(fname):
"""Grab configs necessary to create a parta2_bbox_head.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
vote_head = model.roi_head.bbox_head
return vote_head
def _get_pointrcnn_bbox_head_cfg(fname):
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
vote_head = model.roi_head.bbox_head
return vote_head
def test_anchor3d_head_loss():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
bbox_head_cfg = _get_head_cfg(
'second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py')
from mmdet3d.models.builder import build_head
self = build_head(bbox_head_cfg)
self.cuda()
assert isinstance(self.conv_cls, torch.nn.modules.conv.Conv2d)
assert self.conv_cls.in_channels == 512
assert self.conv_cls.out_channels == 18
assert self.conv_reg.out_channels == 42
assert self.conv_dir_cls.out_channels == 12
# test forward
feats = list()
feats.append(torch.rand([2, 512, 200, 176], dtype=torch.float32).cuda())
(cls_score, bbox_pred, dir_cls_preds) = self.forward(feats)
assert cls_score[0].shape == torch.Size([2, 18, 200, 176])
assert bbox_pred[0].shape == torch.Size([2, 42, 200, 176])
assert dir_cls_preds[0].shape == torch.Size([2, 12, 200, 176])
# test loss
gt_bboxes = list(
torch.tensor(
[[[6.4118, -3.4305, -1.7291, 1.7033, 3.4693, 1.6197, -0.9091]],
[[16.9107, 9.7925, -1.9201, 1.6097, 3.2786, 1.5307, -2.4056]]],
dtype=torch.float32).cuda())
gt_labels = list(torch.tensor([[0], [1]], dtype=torch.int64).cuda())
input_metas = [{
'sample_idx': 1234
}, {
'sample_idx': 2345
}] # fake input_metas
losses = self.loss(cls_score, bbox_pred, dir_cls_preds, gt_bboxes,
gt_labels, input_metas)
assert losses['loss_cls'][0] > 0
assert losses['loss_bbox'][0] > 0
assert losses['loss_dir'][0] > 0
# test empty ground truth case
gt_bboxes = list(torch.empty((2, 0, 7)).cuda())
gt_labels = list(torch.empty((2, 0)).cuda())
empty_gt_losses = self.loss(cls_score, bbox_pred, dir_cls_preds, gt_bboxes,
gt_labels, input_metas)
assert empty_gt_losses['loss_cls'][0] > 0
assert empty_gt_losses['loss_bbox'][0] == 0
assert empty_gt_losses['loss_dir'][0] == 0
def test_anchor3d_head_getboxes():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
bbox_head_cfg = _get_head_cfg(
'second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py')
from mmdet3d.models.builder import build_head
self = build_head(bbox_head_cfg)
self.cuda()
feats = list()
feats.append(torch.rand([2, 512, 200, 176], dtype=torch.float32).cuda())
# fake input_metas
input_metas = [{
'sample_idx': 1234,
'box_type_3d': LiDARInstance3DBoxes,
'box_mode_3d': Box3DMode.LIDAR
}, {
'sample_idx': 2345,
'box_type_3d': LiDARInstance3DBoxes,
'box_mode_3d': Box3DMode.LIDAR
}]
(cls_score, bbox_pred, dir_cls_preds) = self.forward(feats)
# test get_boxes
cls_score[0] -= 1.5 # too many positive samples may cause cuda oom
result_list = self.get_bboxes(cls_score, bbox_pred, dir_cls_preds,
input_metas)
assert (result_list[0][1] > 0.3).all()
def test_parta2_rpnhead_getboxes():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
rpn_head_cfg, proposal_cfg = _get_rpn_head_cfg(
'parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py')
self = build_head(rpn_head_cfg)
self.cuda()
feats = list()
feats.append(torch.rand([2, 512, 200, 176], dtype=torch.float32).cuda())
# fake input_metas
input_metas = [{
'sample_idx': 1234,
'box_type_3d': LiDARInstance3DBoxes,
'box_mode_3d': Box3DMode.LIDAR
}, {
'sample_idx': 2345,
'box_type_3d': LiDARInstance3DBoxes,
'box_mode_3d': Box3DMode.LIDAR
}]
(cls_score, bbox_pred, dir_cls_preds) = self.forward(feats)
# test get_boxes
cls_score[0] -= 1.5 # too many positive samples may cause cuda oom
result_list = self.get_bboxes(cls_score, bbox_pred, dir_cls_preds,
input_metas, proposal_cfg)
assert result_list[0]['scores_3d'].shape == torch.Size([512])
assert result_list[0]['labels_3d'].shape == torch.Size([512])
assert result_list[0]['cls_preds'].shape == torch.Size([512, 3])
assert result_list[0]['boxes_3d'].tensor.shape == torch.Size([512, 7])
def test_point_rcnn_rpnhead_getboxes():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
rpn_head_cfg, proposal_cfg = _get_pointrcnn_rpn_head_cfg(
'./point_rcnn/point_rcnn_2x8_kitti-3d-3classes.py')
self = build_head(rpn_head_cfg)
self.cuda()
fp_features = torch.rand([2, 128, 1024], dtype=torch.float32).cuda()
feats = {'fp_features': fp_features}
# fake input_metas
input_metas = [{
'sample_idx': 1234,
'box_type_3d': LiDARInstance3DBoxes,
'box_mode_3d': Box3DMode.LIDAR
}, {
'sample_idx': 2345,
'box_type_3d': LiDARInstance3DBoxes,
'box_mode_3d': Box3DMode.LIDAR
}]
(bbox_preds, cls_preds) = self.forward(feats)
assert bbox_preds.shape == (2, 1024, 8)
assert cls_preds.shape == (2, 1024, 3)
points = torch.rand([2, 1024, 3], dtype=torch.float32).cuda()
result_list = self.get_bboxes(points, bbox_preds, cls_preds, input_metas)
max_num = proposal_cfg.nms_cfg.nms_post
bbox, score_selected, labels, cls_preds_selected = result_list[0]
assert bbox.tensor.shape == (max_num, 7)
assert score_selected.shape == (max_num, )
assert labels.shape == (max_num, )
assert cls_preds_selected.shape == (max_num, 3)
def test_vote_head():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
_setup_seed(0)
vote_head_cfg = _get_vote_head_cfg(
'votenet/votenet_8x8_scannet-3d-18class.py')
self = build_head(vote_head_cfg).cuda()
fp_xyz = [torch.rand([2, 256, 3], dtype=torch.float32).cuda()]
fp_features = [torch.rand([2, 256, 256], dtype=torch.float32).cuda()]
fp_indices = [torch.randint(0, 128, [2, 256]).cuda()]
input_dict = dict(
fp_xyz=fp_xyz, fp_features=fp_features, fp_indices=fp_indices)
# test forward
ret_dict = self(input_dict, 'vote')
assert ret_dict['center'].shape == torch.Size([2, 256, 3])
assert ret_dict['obj_scores'].shape == torch.Size([2, 256, 2])
assert ret_dict['size_res'].shape == torch.Size([2, 256, 18, 3])
assert ret_dict['dir_res'].shape == torch.Size([2, 256, 1])
# test loss
points = [torch.rand([40000, 4], device='cuda') for i in range(2)]
gt_bbox1 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
gt_bbox2 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
gt_bboxes = [gt_bbox1, gt_bbox2]
gt_labels = [torch.randint(0, 18, [10], device='cuda') for i in range(2)]
pts_semantic_mask = [
torch.randint(0, 18, [40000], device='cuda') for i in range(2)
]
pts_instance_mask = [
torch.randint(0, 10, [40000], device='cuda') for i in range(2)
]
losses = self.loss(ret_dict, points, gt_bboxes, gt_labels,
pts_semantic_mask, pts_instance_mask)
assert losses['vote_loss'] >= 0
assert losses['objectness_loss'] >= 0
assert losses['semantic_loss'] >= 0
assert losses['center_loss'] >= 0
assert losses['dir_class_loss'] >= 0
assert losses['dir_res_loss'] >= 0
assert losses['size_class_loss'] >= 0
assert losses['size_res_loss'] >= 0
# test multiclass_nms_single
obj_scores = torch.rand([256], device='cuda')
sem_scores = torch.rand([256, 18], device='cuda')
points = torch.rand([40000, 3], device='cuda')
bbox = torch.rand([256, 7], device='cuda')
input_meta = dict(box_type_3d=DepthInstance3DBoxes)
bbox_selected, score_selected, labels = self.multiclass_nms_single(
obj_scores, sem_scores, bbox, points, input_meta)
assert bbox_selected.shape[0] >= 0
assert bbox_selected.shape[1] == 7
assert score_selected.shape[0] >= 0
assert labels.shape[0] >= 0
# test get_boxes
points = torch.rand([1, 40000, 4], device='cuda')
seed_points = torch.rand([1, 1024, 3], device='cuda')
seed_indices = torch.randint(0, 40000, [1, 1024], device='cuda')
vote_points = torch.rand([1, 1024, 3], device='cuda')
vote_features = torch.rand([1, 256, 1024], device='cuda')
aggregated_points = torch.rand([1, 256, 3], device='cuda')
aggregated_indices = torch.range(0, 256, device='cuda')
obj_scores = torch.rand([1, 256, 2], device='cuda')
center = torch.rand([1, 256, 3], device='cuda')
dir_class = torch.rand([1, 256, 1], device='cuda')
dir_res_norm = torch.rand([1, 256, 1], device='cuda')
dir_res = torch.rand([1, 256, 1], device='cuda')
size_class = torch.rand([1, 256, 18], device='cuda')
size_res = torch.rand([1, 256, 18, 3], device='cuda')
sem_scores = torch.rand([1, 256, 18], device='cuda')
bbox_preds = dict(
seed_points=seed_points,
seed_indices=seed_indices,
vote_points=vote_points,
vote_features=vote_features,
aggregated_points=aggregated_points,
aggregated_indices=aggregated_indices,
obj_scores=obj_scores,
center=center,
dir_class=dir_class,
dir_res_norm=dir_res_norm,
dir_res=dir_res,
size_class=size_class,
size_res=size_res,
sem_scores=sem_scores)
results = self.get_bboxes(points, bbox_preds, [input_meta])
assert results[0][0].tensor.shape[0] >= 0
assert results[0][0].tensor.shape[1] == 7
assert results[0][1].shape[0] >= 0
assert results[0][2].shape[0] >= 0
def test_smoke_mono3d_head():
head_cfg = dict(
type='SMOKEMono3DHead',
num_classes=3,
in_channels=64,
dim_channel=[3, 4, 5],
ori_channel=[6, 7],
stacked_convs=0,
feat_channels=64,
use_direction_classifier=False,
diff_rad_by_sin=False,
pred_attrs=False,
pred_velo=False,
dir_offset=0,
strides=None,
group_reg_dims=(8, ),
cls_branch=(256, ),
reg_branch=((256, ), ),
num_attrs=0,
bbox_code_size=7,
dir_branch=(),
attr_branch=(),
bbox_coder=dict(
type='SMOKECoder',
base_depth=(28.01, 16.32),
base_dims=((0.88, 1.73, 0.67), (1.78, 1.70, 0.58), (3.88, 1.63,
1.53)),
code_size=7),
loss_cls=dict(type='GaussianFocalLoss', loss_weight=1.0),
loss_bbox=dict(type='L1Loss', reduction='sum', loss_weight=1 / 300),
loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_attr=None,
conv_bias=True,
dcn_on_last_conv=False)
self = build_head(head_cfg)
feats = [torch.rand([2, 64, 32, 32], dtype=torch.float32)]
# test forward
ret_dict = self(feats)
assert len(ret_dict) == 2
assert len(ret_dict[0]) == 1
assert ret_dict[0][0].shape == torch.Size([2, 3, 32, 32])
assert ret_dict[1][0].shape == torch.Size([2, 8, 32, 32])
# test loss
gt_bboxes = [
torch.Tensor([[1.0, 2.0, 20.0, 40.0], [45.0, 50.0, 80.0, 70.1],
[34.0, 39.0, 65.0, 64.0]]),
torch.Tensor([[11.0, 22.0, 29.0, 31.0], [41.0, 55.0, 60.0, 99.0],
[29.0, 29.0, 65.0, 56.0]])
]
gt_bboxes_3d = [
CameraInstance3DBoxes(torch.rand([3, 7]), box_dim=7),
CameraInstance3DBoxes(torch.rand([3, 7]), box_dim=7)
]
gt_labels = [torch.randint(0, 3, [3]) for i in range(2)]
gt_labels_3d = gt_labels
centers2d = [torch.randint(0, 60, (3, 2)), torch.randint(0, 40, (3, 2))]
depths = [
torch.rand([3], dtype=torch.float32),
torch.rand([3], dtype=torch.float32)
]
attr_labels = None
img_metas = [
dict(
cam2img=[[1260.8474446004698, 0.0, 807.968244525554, 40.1111],
[0.0, 1260.8474446004698, 495.3344268742088, 2.34422],
[0.0, 0.0, 1.0, 0.00333333], [0.0, 0.0, 0.0, 1.0]],
scale_factor=np.array([1., 1., 1., 1.], dtype=np.float32),
pad_shape=[128, 128],
trans_mat=np.array([[0.25, 0., 0.], [0., 0.25, 0], [0., 0., 1.]],
dtype=np.float32),
affine_aug=False,
box_type_3d=CameraInstance3DBoxes) for i in range(2)
]
losses = self.loss(*ret_dict, gt_bboxes, gt_labels, gt_bboxes_3d,
gt_labels_3d, centers2d, depths, attr_labels, img_metas)
assert losses['loss_cls'] >= 0
assert losses['loss_bbox'] >= 0
# test get_boxes
results = self.get_bboxes(*ret_dict, img_metas)
assert len(results) == 2
assert len(results[0]) == 4
assert results[0][0].tensor.shape == torch.Size([100, 7])
assert results[0][1].shape == torch.Size([100])
assert results[0][2].shape == torch.Size([100])
assert results[0][3] is None
def test_parta2_bbox_head():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
parta2_bbox_head_cfg = _get_parta2_bbox_head_cfg(
'./parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py')
self = build_head(parta2_bbox_head_cfg).cuda()
seg_feats = torch.rand([256, 14, 14, 14, 16]).cuda()
part_feats = torch.rand([256, 14, 14, 14, 4]).cuda()
cls_score, bbox_pred = self.forward(seg_feats, part_feats)
assert cls_score.shape == (256, 1)
assert bbox_pred.shape == (256, 7)
def test_point_rcnn_bbox_head():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
pointrcnn_bbox_head_cfg = _get_pointrcnn_bbox_head_cfg(
'./point_rcnn/point_rcnn_2x8_kitti-3d-3classes.py')
self = build_head(pointrcnn_bbox_head_cfg).cuda()
feats = torch.rand([100, 512, 133]).cuda()
rcnn_cls, rcnn_reg = self.forward(feats)
assert rcnn_cls.shape == (100, 1)
assert rcnn_reg.shape == (100, 7)
def test_part_aggregation_ROI_head():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
roi_head_cfg = _get_roi_head_cfg(
'parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py')
self = build_head(roi_head_cfg).cuda()
features = np.load('./tests/test_samples/parta2_roihead_inputs.npz')
seg_features = torch.tensor(
features['seg_features'], dtype=torch.float32, device='cuda')
feats_dict = dict(seg_features=seg_features)
voxels = torch.tensor(
features['voxels'], dtype=torch.float32, device='cuda')
num_points = torch.ones([500], device='cuda')
coors = torch.zeros([500, 4], device='cuda')
voxel_centers = torch.zeros([500, 3], device='cuda')
box_type_3d = LiDARInstance3DBoxes
img_metas = [dict(box_type_3d=box_type_3d)]
voxels_dict = dict(
voxels=voxels,
num_points=num_points,
coors=coors,
voxel_centers=voxel_centers)
pred_bboxes = LiDARInstance3DBoxes(
torch.tensor(
[[0.3990, 0.5167, 0.0249, 0.9401, 0.9459, 0.7967, 0.4150],
[0.8203, 0.2290, 0.9096, 0.1183, 0.0752, 0.4092, 0.9601],
[0.2093, 0.1940, 0.8909, 0.4387, 0.3570, 0.5454, 0.8299],
[0.2099, 0.7684, 0.4290, 0.2117, 0.6606, 0.1654, 0.4250],
[0.9927, 0.6964, 0.2472, 0.7028, 0.7494, 0.9303, 0.0494]],
dtype=torch.float32,
device='cuda'))
pred_scores = torch.tensor([0.9722, 0.7910, 0.4690, 0.3300, 0.3345],
dtype=torch.float32,
device='cuda')
pred_labels = torch.tensor([0, 1, 0, 2, 1],
dtype=torch.int64,
device='cuda')
pred_clses = torch.tensor(
[[0.7874, 0.1344, 0.2190], [0.8193, 0.6969, 0.7304],
[0.2328, 0.9028, 0.3900], [0.6177, 0.5012, 0.2330],
[0.8985, 0.4894, 0.7152]],
dtype=torch.float32,
device='cuda')
proposal = dict(
boxes_3d=pred_bboxes,
scores_3d=pred_scores,
labels_3d=pred_labels,
cls_preds=pred_clses)
proposal_list = [proposal]
gt_bboxes_3d = [LiDARInstance3DBoxes(torch.rand([5, 7], device='cuda'))]
gt_labels_3d = [torch.randint(0, 3, [5], device='cuda')]
losses = self.forward_train(feats_dict, voxels_dict, {}, proposal_list,
gt_bboxes_3d, gt_labels_3d)
assert losses['loss_seg'] >= 0
assert losses['loss_part'] >= 0
assert losses['loss_cls'] >= 0
assert losses['loss_bbox'] >= 0
assert losses['loss_corner'] >= 0
bbox_results = self.simple_test(feats_dict, voxels_dict, img_metas,
proposal_list)
boxes_3d = bbox_results[0]['boxes_3d']
scores_3d = bbox_results[0]['scores_3d']
labels_3d = bbox_results[0]['labels_3d']
assert boxes_3d.tensor.shape == (12, 7)
assert scores_3d.shape == (12, )
assert labels_3d.shape == (12, )
def test_point_rcnn_roi_head():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
roi_head_cfg = _get_roi_head_cfg(
'./point_rcnn/point_rcnn_2x8_kitti-3d-3classes.py')
self = build_head(roi_head_cfg).cuda()
features = torch.rand([3, 128, 16384]).cuda()
points = torch.rand([3, 16384, 3]).cuda()
points_cls_preds = torch.rand([3, 16384, 3]).cuda()
rcnn_feats = {
'features': features,
'points': points,
'points_cls_preds': points_cls_preds
}
boxes_3d = LiDARInstance3DBoxes(torch.rand(50, 7).cuda())
labels_3d = torch.randint(low=0, high=2, size=[50]).cuda()
proposal = {'boxes_3d': boxes_3d, 'labels_3d': labels_3d}
proposal_list = [proposal for i in range(3)]
gt_bboxes_3d = [
LiDARInstance3DBoxes(torch.rand([5, 7], device='cuda'))
for i in range(3)
]
gt_labels_3d = [torch.randint(0, 2, [5], device='cuda') for i in range(3)]
box_type_3d = LiDARInstance3DBoxes
img_metas = [dict(box_type_3d=box_type_3d) for i in range(3)]
losses = self.forward_train(rcnn_feats, img_metas, proposal_list,
gt_bboxes_3d, gt_labels_3d)
assert losses['loss_cls'] >= 0
assert losses['loss_bbox'] >= 0
assert losses['loss_corner'] >= 0
bbox_results = self.simple_test(rcnn_feats, img_metas, proposal_list)
boxes_3d = bbox_results[0]['boxes_3d']
scores_3d = bbox_results[0]['scores_3d']
labels_3d = bbox_results[0]['labels_3d']
assert boxes_3d.tensor.shape[1] == 7
assert boxes_3d.tensor.shape[0] == scores_3d.shape[0]
assert scores_3d.shape[0] == labels_3d.shape[0]
def test_free_anchor_3D_head():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
_setup_seed(0)
pts_bbox_head_cfg = _get_pts_bbox_head_cfg(
'./free_anchor/hv_pointpillars_fpn_sbn-all_'
'free-anchor_4x8_2x_nus-3d.py')
self = build_head(pts_bbox_head_cfg)
cls_scores = [
torch.rand([4, 80, 200, 200], device='cuda') for i in range(3)
]
bbox_preds = [
torch.rand([4, 72, 200, 200], device='cuda') for i in range(3)
]
dir_cls_preds = [
torch.rand([4, 16, 200, 200], device='cuda') for i in range(3)
]
gt_bboxes = [
LiDARInstance3DBoxes(torch.rand([8, 9], device='cuda'), box_dim=9)
for i in range(4)
]
gt_labels = [
torch.randint(0, 10, [8], device='cuda', dtype=torch.long)
for i in range(4)
]
input_metas = [0]
losses = self.loss(cls_scores, bbox_preds, dir_cls_preds, gt_bboxes,
gt_labels, input_metas, None)
assert losses['positive_bag_loss'] >= 0
assert losses['negative_bag_loss'] >= 0
def test_primitive_head():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
_setup_seed(0)
primitive_head_cfg = dict(
type='PrimitiveHead',
num_dims=2,
num_classes=18,
primitive_mode='z',
vote_module_cfg=dict(
in_channels=256,
vote_per_seed=1,
gt_per_seed=1,
conv_channels=(256, 256),
conv_cfg=dict(type='Conv1d'),
norm_cfg=dict(type='BN1d'),
norm_feats=True,
vote_loss=dict(
type='ChamferDistance',
mode='l1',
reduction='none',
loss_dst_weight=10.0)),
vote_aggregation_cfg=dict(
type='PointSAModule',
num_point=64,
radius=0.3,
num_sample=16,
mlp_channels=[256, 128, 128, 128],
use_xyz=True,
normalize_xyz=True),
feat_channels=(128, 128),
conv_cfg=dict(type='Conv1d'),
norm_cfg=dict(type='BN1d'),
objectness_loss=dict(
type='CrossEntropyLoss',
class_weight=[0.4, 0.6],
reduction='mean',
loss_weight=1.0),
center_loss=dict(
type='ChamferDistance',
mode='l1',
reduction='sum',
loss_src_weight=1.0,
loss_dst_weight=1.0),
semantic_reg_loss=dict(
type='ChamferDistance',
mode='l1',
reduction='sum',
loss_src_weight=1.0,
loss_dst_weight=1.0),
semantic_cls_loss=dict(
type='CrossEntropyLoss', reduction='sum', loss_weight=1.0),
train_cfg=dict(
dist_thresh=0.2,
var_thresh=1e-2,
lower_thresh=1e-6,
num_point=100,
num_point_line=10,
line_thresh=0.2))
self = build_head(primitive_head_cfg).cuda()
fp_xyz = [torch.rand([2, 64, 3], dtype=torch.float32).cuda()]
hd_features = torch.rand([2, 256, 64], dtype=torch.float32).cuda()
fp_indices = [torch.randint(0, 64, [2, 64]).cuda()]
input_dict = dict(
fp_xyz_net0=fp_xyz, hd_feature=hd_features, fp_indices_net0=fp_indices)
# test forward
ret_dict = self(input_dict, 'vote')
assert ret_dict['center_z'].shape == torch.Size([2, 64, 3])
assert ret_dict['size_residuals_z'].shape == torch.Size([2, 64, 2])
assert ret_dict['sem_cls_scores_z'].shape == torch.Size([2, 64, 18])
assert ret_dict['aggregated_points_z'].shape == torch.Size([2, 64, 3])
# test loss
points = torch.rand([2, 1024, 3], dtype=torch.float32).cuda()
ret_dict['seed_points'] = fp_xyz[0]
ret_dict['seed_indices'] = fp_indices[0]
from mmdet3d.core.bbox import DepthInstance3DBoxes
gt_bboxes_3d = [
DepthInstance3DBoxes(torch.rand([4, 7], dtype=torch.float32).cuda()),
DepthInstance3DBoxes(torch.rand([4, 7], dtype=torch.float32).cuda())
]
gt_labels_3d = torch.randint(0, 18, [2, 4]).cuda()
gt_labels_3d = [gt_labels_3d[0], gt_labels_3d[1]]
pts_semantic_mask = torch.randint(0, 19, [2, 1024]).cuda()
pts_semantic_mask = [pts_semantic_mask[0], pts_semantic_mask[1]]
pts_instance_mask = torch.randint(0, 4, [2, 1024]).cuda()
pts_instance_mask = [pts_instance_mask[0], pts_instance_mask[1]]
loss_input_dict = dict(
bbox_preds=ret_dict,
points=points,
gt_bboxes_3d=gt_bboxes_3d,
gt_labels_3d=gt_labels_3d,
pts_semantic_mask=pts_semantic_mask,
pts_instance_mask=pts_instance_mask)
losses_dict = self.loss(**loss_input_dict)
assert losses_dict['flag_loss_z'] >= 0
assert losses_dict['vote_loss_z'] >= 0
assert losses_dict['center_loss_z'] >= 0
assert losses_dict['size_loss_z'] >= 0
assert losses_dict['sem_loss_z'] >= 0
# 'Primitive_mode' should be one of ['z', 'xy', 'line']
with pytest.raises(AssertionError):
primitive_head_cfg['vote_module_cfg']['in_channels'] = 'xyz'
build_head(primitive_head_cfg)
def test_h3d_head():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
_setup_seed(0)
h3d_head_cfg = _get_roi_head_cfg('h3dnet/h3dnet_3x8_scannet-3d-18class.py')
num_point = 128
num_proposal = 64
h3d_head_cfg.primitive_list[0].vote_aggregation_cfg.num_point = num_point
h3d_head_cfg.primitive_list[1].vote_aggregation_cfg.num_point = num_point
h3d_head_cfg.primitive_list[2].vote_aggregation_cfg.num_point = num_point
h3d_head_cfg.bbox_head.num_proposal = num_proposal
self = build_head(h3d_head_cfg).cuda()
# prepare RoI outputs
fp_xyz = [torch.rand([1, num_point, 3], dtype=torch.float32).cuda()]
hd_features = torch.rand([1, 256, num_point], dtype=torch.float32).cuda()
fp_indices = [torch.randint(0, 128, [1, num_point]).cuda()]
aggregated_points = torch.rand([1, num_proposal, 3],
dtype=torch.float32).cuda()
aggregated_features = torch.rand([1, 128, num_proposal],
dtype=torch.float32).cuda()
proposal_list = torch.cat([
torch.rand([1, num_proposal, 3], dtype=torch.float32).cuda() * 4 - 2,
torch.rand([1, num_proposal, 3], dtype=torch.float32).cuda() * 4,
torch.zeros([1, num_proposal, 1]).cuda()
],
dim=-1)
input_dict = dict(
fp_xyz_net0=fp_xyz,
hd_feature=hd_features,
aggregated_points=aggregated_points,
aggregated_features=aggregated_features,
seed_points=fp_xyz[0],
seed_indices=fp_indices[0],
proposal_list=proposal_list)
# prepare gt label
from mmdet3d.core.bbox import DepthInstance3DBoxes
gt_bboxes_3d = [
DepthInstance3DBoxes(torch.rand([4, 7], dtype=torch.float32).cuda()),
DepthInstance3DBoxes(torch.rand([4, 7], dtype=torch.float32).cuda())
]
gt_labels_3d = torch.randint(0, 18, [1, 4]).cuda()
gt_labels_3d = [gt_labels_3d[0]]
pts_semantic_mask = torch.randint(0, 19, [1, num_point]).cuda()
pts_semantic_mask = [pts_semantic_mask[0]]
pts_instance_mask = torch.randint(0, 4, [1, num_point]).cuda()
pts_instance_mask = [pts_instance_mask[0]]
points = torch.rand([1, num_point, 3], dtype=torch.float32).cuda()
# prepare rpn targets
vote_targets = torch.rand([1, num_point, 9], dtype=torch.float32).cuda()
vote_target_masks = torch.rand([1, num_point], dtype=torch.float32).cuda()
size_class_targets = torch.rand([1, num_proposal],
dtype=torch.float32).cuda().long()
size_res_targets = torch.rand([1, num_proposal, 3],
dtype=torch.float32).cuda()
dir_class_targets = torch.rand([1, num_proposal],
dtype=torch.float32).cuda().long()
dir_res_targets = torch.rand([1, num_proposal], dtype=torch.float32).cuda()
center_targets = torch.rand([1, 4, 3], dtype=torch.float32).cuda()
mask_targets = torch.rand([1, num_proposal],
dtype=torch.float32).cuda().long()
valid_gt_masks = torch.rand([1, 4], dtype=torch.float32).cuda()
objectness_targets = torch.rand([1, num_proposal],
dtype=torch.float32).cuda().long()
objectness_weights = torch.rand([1, num_proposal],
dtype=torch.float32).cuda()
box_loss_weights = torch.rand([1, num_proposal],
dtype=torch.float32).cuda()
valid_gt_weights = torch.rand([1, 4], dtype=torch.float32).cuda()
targets = (vote_targets, vote_target_masks, size_class_targets,
size_res_targets, dir_class_targets, dir_res_targets,
center_targets, None, mask_targets, valid_gt_masks,
objectness_targets, objectness_weights, box_loss_weights,
valid_gt_weights)
input_dict['targets'] = targets
# train forward
ret_dict = self.forward_train(
input_dict,
points=points,
gt_bboxes_3d=gt_bboxes_3d,
gt_labels_3d=gt_labels_3d,
pts_semantic_mask=pts_semantic_mask,
pts_instance_mask=pts_instance_mask,
img_metas=None)
assert ret_dict['flag_loss_z'] >= 0
assert ret_dict['vote_loss_z'] >= 0
assert ret_dict['center_loss_z'] >= 0
assert ret_dict['size_loss_z'] >= 0
assert ret_dict['sem_loss_z'] >= 0
assert ret_dict['objectness_loss_optimized'] >= 0
assert ret_dict['primitive_sem_matching_loss'] >= 0
def test_center_head():
tasks = [
dict(num_class=1, class_names=['car']),
dict(num_class=2, class_names=['truck', 'construction_vehicle']),
dict(num_class=2, class_names=['bus', 'trailer']),
dict(num_class=1, class_names=['barrier']),
dict(num_class=2, class_names=['motorcycle', 'bicycle']),
dict(num_class=2, class_names=['pedestrian', 'traffic_cone']),
]
bbox_cfg = dict(
type='CenterPointBBoxCoder',
post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
max_num=500,
score_threshold=0.1,
pc_range=[-51.2, -51.2],
out_size_factor=8,
voxel_size=[0.2, 0.2])
train_cfg = dict(
grid_size=[1024, 1024, 40],
point_cloud_range=[-51.2, -51.2, -5., 51.2, 51.2, 3.],
voxel_size=[0.1, 0.1, 0.2],
out_size_factor=8,
dense_reg=1,
gaussian_overlap=0.1,
max_objs=500,
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 1.0, 1.0],
min_radius=2)
test_cfg = dict(
post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
max_per_img=500,
max_pool_nms=False,
min_radius=[4, 12, 10, 1, 0.85, 0.175],
post_max_size=83,
score_threshold=0.1,
pc_range=[-51.2, -51.2],
out_size_factor=8,
voxel_size=[0.2, 0.2],
nms_type='circle')
center_head_cfg = dict(
type='CenterHead',
in_channels=sum([256, 256]),
tasks=tasks,
train_cfg=train_cfg,
test_cfg=test_cfg,
bbox_coder=bbox_cfg,
common_heads=dict(
reg=(2, 2), height=(1, 2), dim=(3, 2), rot=(2, 2), vel=(2, 2)),
share_conv_channel=64,
norm_bbox=True)
center_head = build_head(center_head_cfg)
x = torch.rand([2, 512, 128, 128])
output = center_head([x])
for i in range(6):
assert output[i][0]['reg'].shape == torch.Size([2, 2, 128, 128])
assert output[i][0]['height'].shape == torch.Size([2, 1, 128, 128])
assert output[i][0]['dim'].shape == torch.Size([2, 3, 128, 128])
assert output[i][0]['rot'].shape == torch.Size([2, 2, 128, 128])
assert output[i][0]['vel'].shape == torch.Size([2, 2, 128, 128])
assert output[i][0]['heatmap'].shape == torch.Size(
[2, tasks[i]['num_class'], 128, 128])
# test get_bboxes
img_metas = [
dict(box_type_3d=LiDARInstance3DBoxes),
dict(box_type_3d=LiDARInstance3DBoxes)
]
ret_lists = center_head.get_bboxes(output, img_metas)
for ret_list in ret_lists:
assert ret_list[0].tensor.shape[0] <= 500
assert ret_list[1].shape[0] <= 500
assert ret_list[2].shape[0] <= 500
def test_dcn_center_head():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and CUDA')
set_random_seed(0)
tasks = [
dict(num_class=1, class_names=['car']),
dict(num_class=2, class_names=['truck', 'construction_vehicle']),
dict(num_class=2, class_names=['bus', 'trailer']),
dict(num_class=1, class_names=['barrier']),
dict(num_class=2, class_names=['motorcycle', 'bicycle']),
dict(num_class=2, class_names=['pedestrian', 'traffic_cone']),
]
voxel_size = [0.2, 0.2, 8]
dcn_center_head_cfg = dict(
type='CenterHead',
in_channels=sum([128, 128, 128]),
tasks=[
dict(num_class=1, class_names=['car']),
dict(num_class=2, class_names=['truck', 'construction_vehicle']),
dict(num_class=2, class_names=['bus', 'trailer']),
dict(num_class=1, class_names=['barrier']),
dict(num_class=2, class_names=['motorcycle', 'bicycle']),
dict(num_class=2, class_names=['pedestrian', 'traffic_cone']),