diff --git a/README.md b/README.md index 0a0d640cbd..b673fef90f 100644 --- a/README.md +++ b/README.md @@ -123,6 +123,48 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb- Please refer to the [release notes](https://github.com/open-mmlab/mmpose/releases/tag/v1.0.0) for more updates brought by MMPose v1.0.0! +## 0.x -> 1.x 迁移进度 + +MMPose v1.0.0 is a major update, including many API and config file changes. Currently, a part of the algorithms have been migrated to v1.0.0, and the remaining algorithms will be completed in subsequent versions. We will show the migration progress in the following list. + +
+Migration Progress + +| Algorithm | Status | +| :--- | :---: | +| MTUT (CVPR 2019) | | +| MSPN (ArXiv 2019)| done | +| InterNet (ECCV 2020) | | +| DEKR (CVPR 2021) | done | +| HigherHRNet (CVPR 2020) | | +| DeepPose (CVPR 2014) | done | +| RLE (ICCV 2021) | done | +| SoftWingloss (TIP 2021) | | +| VideoPose3D (CVPR 2019) | | +| Hourglass (ECCV 2016) | done | +| LiteHRNet (CVPR 2021) | done | +| AdaptiveWingloss (ICCV 2019) | done | +| SimpleBaseline2D (ECCV 2018) | done | +| PoseWarper (NeurIPS 2019) | | +| SimpleBaseline3D (ICCV 2017) | | +| HMR (CVPR 2018) | | +| UDP (CVPR 2020) | done | +| VIPNAS (CVPR 2021) | done | +| Wingloss (CVPR 2018) | | +| DarkPose (CVPR 2020) | done | +| Associative Embedding (NIPS 2017) | in progress | +| VoxelPose (ECCV 2020) | | +| RSN (ECCV 2020) | done | +| CID (CVPR 2022) | done | +| CPM (CVPR 2016) | done | +| HRNet (CVPR 2019) | done | +| HRNetv2 (TPAMI 2019) | done | +| SCNet (CVPR 2020) | done | + +
+ +If your algorithm has not been migrated, you can continue to use the [0.x branch](https://github.com/open-mmlab/mmpose/tree/0.x) and [old documentation](https://mmpose.readthedocs.io/en/0.x/). + ## Installation Please refer to [installation.md](https://mmpose.readthedocs.io/en/latest/installation.html) for more detailed installation and dataset preparation. diff --git a/README_CN.md b/README_CN.md index c1c4898ca2..7e28ced6e6 100644 --- a/README_CN.md +++ b/README_CN.md @@ -121,6 +121,47 @@ https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb- 请查看完整的 [版本说明](https://github.com/open-mmlab/mmpose/releases/tag/v1.0.0) 以了解更多 MMPose v1.0.0 带来的更新! +## 0.x / 1.x 迁移 + +MMPose v1.0.0 是一个重大更新,包括了大量的 API 和配置文件的变化。目前 v1.0.0 中已经完成了一部分算法的迁移工作,剩余的算法将在后续的版本中陆续完成,我们将在下面的列表中展示迁移进度。 + +
+迁移进度 + +| 算法名称 | 迁移进度 | +| :--- | :---: | +| MTUT (CVPR 2019) | | +| MSPN (ArXiv 2019)| done | +| InterNet (ECCV 2020) | | +| DEKR (CVPR 2021) | done | +| HigherHRNet (CVPR 2020) | | +| DeepPose (CVPR 2014) | done | +| RLE (ICCV 2021) | done | +| SoftWingloss (TIP 2021) | | +| VideoPose3D (CVPR 2019) | | +| Hourglass (ECCV 2016) | done | +| LiteHRNet (CVPR 2021) | done | +| AdaptiveWingloss (ICCV 2019) | done | +| SimpleBaseline2D (ECCV 2018) | done | +| PoseWarper (NeurIPS 2019) | | +| SimpleBaseline3D (ICCV 2017) | | +| HMR (CVPR 2018) | | +| UDP (CVPR 2020) | done | +| VIPNAS (CVPR 2021) | done | +| Wingloss (CVPR 2018) | | +| DarkPose (CVPR 2020) | done | +| Associative Embedding (NIPS 2017) | in progress | +| VoxelPose (ECCV 2020) | | +| RSN (ECCV 2020) | done | +| CID (CVPR 2022) | done | +| CPM (CVPR 2016) | done | +| HRNet (CVPR 2019) | done | +| HRNetv2 (TPAMI 2019) | done | +| SCNet (CVPR 2020) | done | + +
+ +如果您使用的算法还没有完成迁移,您也可以继续使用访问 [0.x 分支](https://github.com/open-mmlab/mmpose/tree/0.x) 和 [旧版文档](https://mmpose.readthedocs.io/zh_CN/0.x/) ## 安装 关于安装的详细说明请参考[安装文档](https://mmpose.readthedocs.io/zh_CN/latest/installation.html)。 @@ -321,8 +362,7 @@ MMPose 是一款由不同学校和公司共同贡献的开源项目。我们感 扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),联络 OpenMMLab [官方微信小助手](https://user-images.githubusercontent.com/25839884/205872898-e2e6009d-c6bb-4d27-8d07-117e697a3da8.jpg)或加入 OpenMMLab 团队的 [官方交流 QQ 群](https://jq.qq.com/?_wv=1027&k=K0QI8ByU)
- +
我们会在 OpenMMLab 社区为大家 diff --git a/docs/en/installation.md b/docs/en/installation.md index 0f8707b77d..dc4a0ab386 100644 --- a/docs/en/installation.md +++ b/docs/en/installation.md @@ -59,13 +59,13 @@ conda install pytorch torchvision cpuonly -c pytorch ```shell pip install -U openmim mim install mmengine -mim install "mmcv>=2.0.0rc4" +mim install "mmcv>=2.0.0" ``` Note that some of the demo scripts in MMPose require [MMDetection](https://github.com/open-mmlab/mmdetection) (mmdet) for human detection. If you want to run these demo scripts with mmdet, you can easily install mmdet as a dependency by running: ```shell -mim install "mmdet>=3.0.0rc6" +mim install "mmdet>=3.0.0" ``` ## Best Practices @@ -89,7 +89,7 @@ pip install -v -e . To use mmpose as a dependency or third-party package, install it with pip: ```shell -mim install "mmpose>=1.0.0rc1" +mim install "mmpose>=1.0.0" ``` ## Verify the installation @@ -173,7 +173,7 @@ To install MMCV with pip instead of MIM, please follow [MMCV installation guides For example, the following command install mmcv built for PyTorch 1.10.x and CUDA 11.3. ```shell -pip install 'mmcv>=2.0.0rc1' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html +pip install 'mmcv>=2.0.0' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html ``` ### Install on CPU-only platforms @@ -192,7 +192,7 @@ thus we only need to install MMEngine, MMCV and MMPose with the following comman ```shell !pip3 install openmim !mim install mmengine -!mim install "mmcv>=2.0.0rc1" +!mim install "mmcv>=2.0.0" ``` **Step 2.** Install MMPose from the source. @@ -208,7 +208,7 @@ thus we only need to install MMEngine, MMCV and MMPose with the following comman ```python import mmpose print(mmpose.__version__) -# Example output: 1.0.0rc0 +# Example output: 1.0.0 ``` ```{note} diff --git a/docs/zh_cn/installation.md b/docs/zh_cn/installation.md index e0917a2e3c..1ec42fe78a 100644 --- a/docs/zh_cn/installation.md +++ b/docs/zh_cn/installation.md @@ -57,13 +57,13 @@ conda install pytorch torchvision cpuonly -c pytorch ```shell pip install -U openmim mim install mmengine -mim install "mmcv>=2.0.0rc1" +mim install "mmcv>=2.0.0" ``` 请注意,MMPose 中的一些推理示例脚本需要使用 [MMDetection](https://github.com/open-mmlab/mmdetection) (mmdet) 检测人体。如果您想运行这些示例脚本,可以通过运行以下命令安装 mmdet: ```shell -mim install "mmdet>=3.0.0rc0" +mim install "mmdet>=3.0.0" ``` ## 最佳实践 @@ -88,7 +88,7 @@ pip install -v -e . 如果只是希望调用 MMPose 的接口,或者在自己的项目中导入 MMPose 中的模块。直接使用 mim 安装即可。 ```shell -mim install "mmpose>=1.0.0rc0" +mim install "mmpose>=1.0.0" ``` ## 验证安装 @@ -180,7 +180,7 @@ MMCV 包含 C++ 和 CUDA 扩展,因此其对 PyTorch 的依赖比较复杂。M 举个例子,如下命令将会安装基于 PyTorch 1.10.x 和 CUDA 11.3 编译的 mmcv。 ```shell -pip install 'mmcv>=2.0.0rc1' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html +pip install 'mmcv>=2.0.0' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html ``` ### 在 CPU 环境中安装 @@ -198,7 +198,7 @@ MMPose 可以仅在 CPU 环境中安装,在 CPU 模式下,您可以完成训 ```shell !pip3 install openmim !mim install mmengine -!mim install "mmcv>=2.0.0rc1" +!mim install "mmcv>=2.0.0" ``` **第 2 步** 从源码安装 mmpose @@ -214,7 +214,7 @@ MMPose 可以仅在 CPU 环境中安装,在 CPU 模式下,您可以完成训 ```python import mmpose print(mmpose.__version__) -# 预期输出: 1.0.0rc0 +# 预期输出: 1.0.0 ``` ```{note}