-
Notifications
You must be signed in to change notification settings - Fork 650
/
__init__.py
932 lines (785 loc) · 30.9 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
# Copyright The OpenTelemetry Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
import atexit
import concurrent.futures
import json
import logging
import threading
import traceback
from collections import OrderedDict
from contextlib import contextmanager
from types import MappingProxyType, TracebackType
from typing import (
Any,
Callable,
Iterator,
MutableSequence,
Optional,
Sequence,
Tuple,
Type,
Union,
)
from opentelemetry import context as context_api
from opentelemetry import trace as trace_api
from opentelemetry.sdk import util
from opentelemetry.sdk.resources import Resource
from opentelemetry.sdk.trace import sampling
from opentelemetry.sdk.util import BoundedDict, BoundedList
from opentelemetry.sdk.util.instrumentation import InstrumentationInfo
from opentelemetry.trace import SpanContext
from opentelemetry.trace.propagation import SPAN_KEY
from opentelemetry.trace.status import (
EXCEPTION_STATUS_FIELD,
Status,
StatusCanonicalCode,
)
from opentelemetry.util import time_ns, types
logger = logging.getLogger(__name__)
MAX_NUM_ATTRIBUTES = 1000
MAX_NUM_EVENTS = 1000
MAX_NUM_LINKS = 1000
VALID_ATTR_VALUE_TYPES = (bool, str, int, float)
class SpanProcessor:
"""Interface which allows hooks for SDK's `Span` start and end method
invocations.
Span processors can be registered directly using
:func:`TracerProvider.add_span_processor` and they are invoked
in the same order as they were registered.
"""
def on_start(
self,
span: "Span",
parent_context: Optional[context_api.Context] = None,
) -> None:
"""Called when a :class:`opentelemetry.trace.Span` is started.
This method is called synchronously on the thread that starts the
span, therefore it should not block or throw an exception.
Args:
span: The :class:`opentelemetry.trace.Span` that just started.
parent_context: The parent context of the span that just started.
"""
def on_end(self, span: "Span") -> None:
"""Called when a :class:`opentelemetry.trace.Span` is ended.
This method is called synchronously on the thread that ends the
span, therefore it should not block or throw an exception.
Args:
span: The :class:`opentelemetry.trace.Span` that just ended.
"""
def shutdown(self) -> None:
"""Called when a :class:`opentelemetry.sdk.trace.Tracer` is shutdown.
"""
def force_flush(self, timeout_millis: int = 30000) -> bool:
"""Export all ended spans to the configured Exporter that have not yet
been exported.
Args:
timeout_millis: The maximum amount of time to wait for spans to be
exported.
Returns:
False if the timeout is exceeded, True otherwise.
"""
class SynchronousMultiSpanProcessor(SpanProcessor):
"""Implementation of class:`SpanProcessor` that forwards all received
events to a list of span processors sequentially.
The underlying span processors are called in sequential order as they were
added.
"""
def __init__(self):
# use a tuple to avoid race conditions when adding a new span and
# iterating through it on "on_start" and "on_end".
self._span_processors = () # type: Tuple[SpanProcessor, ...]
self._lock = threading.Lock()
def add_span_processor(self, span_processor: SpanProcessor) -> None:
"""Adds a SpanProcessor to the list handled by this instance."""
with self._lock:
self._span_processors = self._span_processors + (span_processor,)
def on_start(
self,
span: "Span",
parent_context: Optional[context_api.Context] = None,
) -> None:
for sp in self._span_processors:
sp.on_start(span, parent_context=parent_context)
def on_end(self, span: "Span") -> None:
for sp in self._span_processors:
sp.on_end(span)
def shutdown(self) -> None:
"""Sequentially shuts down all underlying span processors.
"""
for sp in self._span_processors:
sp.shutdown()
def force_flush(self, timeout_millis: int = 30000) -> bool:
"""Sequentially calls force_flush on all underlying
:class:`SpanProcessor`
Args:
timeout_millis: The maximum amount of time over all span processors
to wait for spans to be exported. In case the first n span
processors exceeded the timeout followup span processors will be
skipped.
Returns:
True if all span processors flushed their spans within the
given timeout, False otherwise.
"""
deadline_ns = time_ns() + timeout_millis * 1000000
for sp in self._span_processors:
current_time_ns = time_ns()
if current_time_ns >= deadline_ns:
return False
if not sp.force_flush((deadline_ns - current_time_ns) // 1000000):
return False
return True
class ConcurrentMultiSpanProcessor(SpanProcessor):
"""Implementation of :class:`SpanProcessor` that forwards all received
events to a list of span processors in parallel.
Calls to the underlying span processors are forwarded in parallel by
submitting them to a thread pool executor and waiting until each span
processor finished its work.
Args:
num_threads: The number of threads managed by the thread pool executor
and thus defining how many span processors can work in parallel.
"""
def __init__(self, num_threads: int = 2):
# use a tuple to avoid race conditions when adding a new span and
# iterating through it on "on_start" and "on_end".
self._span_processors = () # type: Tuple[SpanProcessor, ...]
self._lock = threading.Lock()
self._executor = concurrent.futures.ThreadPoolExecutor(
max_workers=num_threads
)
def add_span_processor(self, span_processor: SpanProcessor) -> None:
"""Adds a SpanProcessor to the list handled by this instance."""
with self._lock:
self._span_processors = self._span_processors + (span_processor,)
def _submit_and_await(
self,
func: Callable[[SpanProcessor], Callable[..., None]],
*args: Any,
**kwargs: Any
):
futures = []
for sp in self._span_processors:
future = self._executor.submit(func(sp), *args, **kwargs)
futures.append(future)
for future in futures:
future.result()
def on_start(
self,
span: "Span",
parent_context: Optional[context_api.Context] = None,
) -> None:
self._submit_and_await(
lambda sp: sp.on_start, span, parent_context=parent_context
)
def on_end(self, span: "Span") -> None:
self._submit_and_await(lambda sp: sp.on_end, span)
def shutdown(self) -> None:
"""Shuts down all underlying span processors in parallel."""
self._submit_and_await(lambda sp: sp.shutdown)
def force_flush(self, timeout_millis: int = 30000) -> bool:
"""Calls force_flush on all underlying span processors in parallel.
Args:
timeout_millis: The maximum amount of time to wait for spans to be
exported.
Returns:
True if all span processors flushed their spans within the given
timeout, False otherwise.
"""
futures = []
for sp in self._span_processors: # type: SpanProcessor
future = self._executor.submit(sp.force_flush, timeout_millis)
futures.append(future)
timeout_sec = timeout_millis / 1e3
done_futures, not_done_futures = concurrent.futures.wait(
futures, timeout_sec
)
if not_done_futures:
return False
for future in done_futures:
if not future.result():
return False
return True
class EventBase(abc.ABC):
def __init__(self, name: str, timestamp: Optional[int] = None) -> None:
self._name = name
if timestamp is None:
self._timestamp = time_ns()
else:
self._timestamp = timestamp
@property
def name(self) -> str:
return self._name
@property
def timestamp(self) -> int:
return self._timestamp
@property
@abc.abstractmethod
def attributes(self) -> types.Attributes:
pass
class Event(EventBase):
"""A text annotation with a set of attributes.
Args:
name: Name of the event.
attributes: Attributes of the event.
timestamp: Timestamp of the event. If `None` it will filled
automatically.
"""
def __init__(
self,
name: str,
attributes: types.Attributes = None,
timestamp: Optional[int] = None,
) -> None:
super().__init__(name, timestamp)
self._attributes = attributes
@property
def attributes(self) -> types.Attributes:
return self._attributes
def _is_valid_attribute_value(value: types.AttributeValue) -> bool:
"""Checks if attribute value is valid.
An attribute value is valid if it is one of the valid types. If the value
is a sequence, it is only valid if all items in the sequence are of valid
type, not a sequence, and are of the same type.
"""
if isinstance(value, Sequence):
if len(value) == 0:
return True
first_element_type = type(value[0])
if first_element_type not in VALID_ATTR_VALUE_TYPES:
logger.warning(
"Invalid type %s in attribute value sequence. Expected one of "
"%s or a sequence of those types",
first_element_type.__name__,
[valid_type.__name__ for valid_type in VALID_ATTR_VALUE_TYPES],
)
return False
for element in list(value)[1:]:
if not isinstance(element, first_element_type):
logger.warning(
"Mixed types %s and %s in attribute value sequence",
first_element_type.__name__,
type(element).__name__,
)
return False
elif not isinstance(value, VALID_ATTR_VALUE_TYPES):
logger.warning(
"Invalid type %s for attribute value. Expected one of %s or a "
"sequence of those types",
type(value).__name__,
[valid_type.__name__ for valid_type in VALID_ATTR_VALUE_TYPES],
)
return False
return True
def _filter_attribute_values(attributes: types.Attributes):
if attributes:
for attr_key, attr_value in list(attributes.items()):
if _is_valid_attribute_value(attr_value):
if isinstance(attr_value, MutableSequence):
attributes[attr_key] = tuple(attr_value)
else:
attributes.pop(attr_key)
def _create_immutable_attributes(attributes):
return MappingProxyType(attributes.copy() if attributes else {})
class Span(trace_api.Span):
"""See `opentelemetry.trace.Span`.
Users should create `Span` objects via the `Tracer` instead of this
constructor.
Args:
name: The name of the operation this span represents
context: The immutable span context
parent: This span's parent's `opentelemetry.trace.SpanContext`, or
None if this is a root span
sampler: The sampler used to create this span
trace_config: TODO
resource: Entity producing telemetry
attributes: The span's attributes to be exported
events: Timestamped events to be exported
links: Links to other spans to be exported
span_processor: `SpanProcessor` to invoke when starting and ending
this `Span`.
"""
def __new__(cls, *args, **kwargs):
if cls is Span:
raise TypeError("Span must be instantiated via a tracer.")
return super().__new__(cls)
def __init__(
self,
name: str,
context: trace_api.SpanContext,
parent: Optional[trace_api.SpanContext] = None,
sampler: Optional[sampling.Sampler] = None,
trace_config: None = None, # TODO
resource: Resource = Resource.create({}),
attributes: types.Attributes = None, # TODO
events: Sequence[Event] = None, # TODO
links: Sequence[trace_api.Link] = (),
kind: trace_api.SpanKind = trace_api.SpanKind.INTERNAL,
span_processor: SpanProcessor = SpanProcessor(),
instrumentation_info: InstrumentationInfo = None,
set_status_on_exception: bool = True,
) -> None:
self.name = name
self.context = context
self.parent = parent
self.sampler = sampler
self.trace_config = trace_config
self.resource = resource
self.kind = kind
self._set_status_on_exception = set_status_on_exception
self.span_processor = span_processor
self.status = None
self._lock = threading.Lock()
_filter_attribute_values(attributes)
if not attributes:
self.attributes = self._new_attributes()
else:
self.attributes = BoundedDict.from_map(
MAX_NUM_ATTRIBUTES, attributes
)
self.events = self._new_events()
if events:
for event in events:
_filter_attribute_values(event.attributes)
# pylint: disable=protected-access
event._attributes = _create_immutable_attributes(
event.attributes
)
self.events.append(event)
if links is None:
self.links = self._new_links()
else:
self.links = BoundedList.from_seq(MAX_NUM_LINKS, links)
self._end_time = None # type: Optional[int]
self._start_time = None # type: Optional[int]
self.instrumentation_info = instrumentation_info
@property
def start_time(self):
return self._start_time
@property
def end_time(self):
return self._end_time
def __repr__(self):
return '{}(name="{}", context={})'.format(
type(self).__name__, self.name, self.context
)
@staticmethod
def _new_attributes():
return BoundedDict(MAX_NUM_ATTRIBUTES)
@staticmethod
def _new_events():
return BoundedList(MAX_NUM_EVENTS)
@staticmethod
def _new_links():
return BoundedList(MAX_NUM_LINKS)
@staticmethod
def _format_context(context):
x_ctx = OrderedDict()
x_ctx["trace_id"] = trace_api.format_trace_id(context.trace_id)
x_ctx["span_id"] = trace_api.format_span_id(context.span_id)
x_ctx["trace_state"] = repr(context.trace_state)
return x_ctx
@staticmethod
def _format_attributes(attributes):
if isinstance(attributes, BoundedDict):
return attributes._dict # pylint: disable=protected-access
if isinstance(attributes, MappingProxyType):
return attributes.copy()
return attributes
@staticmethod
def _format_events(events):
f_events = []
for event in events:
f_event = OrderedDict()
f_event["name"] = event.name
f_event["timestamp"] = util.ns_to_iso_str(event.timestamp)
f_event["attributes"] = Span._format_attributes(event.attributes)
f_events.append(f_event)
return f_events
@staticmethod
def _format_links(links):
f_links = []
for link in links:
f_link = OrderedDict()
f_link["context"] = Span._format_context(link.context)
f_link["attributes"] = Span._format_attributes(link.attributes)
f_links.append(f_link)
return f_links
def to_json(self, indent=4):
parent_id = None
if self.parent is not None:
if isinstance(self.parent, Span):
ctx = self.parent.context
parent_id = trace_api.format_span_id(ctx.span_id)
elif isinstance(self.parent, SpanContext):
parent_id = trace_api.format_span_id(self.parent.span_id)
start_time = None
if self.start_time:
start_time = util.ns_to_iso_str(self.start_time)
end_time = None
if self.end_time:
end_time = util.ns_to_iso_str(self.end_time)
if self.status is not None:
status = OrderedDict()
status["canonical_code"] = str(self.status.canonical_code.name)
if self.status.description:
status["description"] = self.status.description
f_span = OrderedDict()
f_span["name"] = self.name
f_span["context"] = self._format_context(self.context)
f_span["kind"] = str(self.kind)
f_span["parent_id"] = parent_id
f_span["start_time"] = start_time
f_span["end_time"] = end_time
if self.status is not None:
f_span["status"] = status
f_span["attributes"] = self._format_attributes(self.attributes)
f_span["events"] = self._format_events(self.events)
f_span["links"] = self._format_links(self.links)
f_span["resource"] = self.resource.attributes
return json.dumps(f_span, indent=indent)
def get_span_context(self):
return self.context
def set_attribute(self, key: str, value: types.AttributeValue) -> None:
with self._lock:
if not self.is_recording():
return
has_ended = self.end_time is not None
if has_ended:
logger.warning("Setting attribute on ended span.")
return
if not key:
logger.warning("invalid key (empty or null)")
return
if _is_valid_attribute_value(value):
# Freeze mutable sequences defensively
if isinstance(value, MutableSequence):
value = tuple(value)
if isinstance(value, bytes):
try:
value = value.decode()
except ValueError:
logger.warning("Byte attribute could not be decoded.")
return
with self._lock:
self.attributes[key] = value
def _add_event(self, event: EventBase) -> None:
with self._lock:
if not self.is_recording():
return
has_ended = self.end_time is not None
if has_ended:
logger.warning("Calling add_event() on an ended span.")
return
self.events.append(event)
def add_event(
self,
name: str,
attributes: types.Attributes = None,
timestamp: Optional[int] = None,
) -> None:
_filter_attribute_values(attributes)
attributes = _create_immutable_attributes(attributes)
self._add_event(
Event(
name=name,
attributes=attributes,
timestamp=time_ns() if timestamp is None else timestamp,
)
)
def start(
self,
start_time: Optional[int] = None,
parent_context: Optional[context_api.Context] = None,
) -> None:
with self._lock:
if not self.is_recording():
return
has_started = self.start_time is not None
if not has_started:
self._start_time = (
start_time if start_time is not None else time_ns()
)
if has_started:
logger.warning("Calling start() on a started span.")
return
self.span_processor.on_start(self, parent_context=parent_context)
def end(self, end_time: Optional[int] = None) -> None:
with self._lock:
if not self.is_recording():
return
if self.start_time is None:
raise RuntimeError("Calling end() on a not started span.")
has_ended = self.end_time is not None
if not has_ended:
if self.status is None:
self.status = Status(canonical_code=StatusCanonicalCode.OK)
self._end_time = (
end_time if end_time is not None else time_ns()
)
if has_ended:
logger.warning("Calling end() on an ended span.")
return
self.span_processor.on_end(self)
def update_name(self, name: str) -> None:
with self._lock:
has_ended = self.end_time is not None
if has_ended:
logger.warning("Calling update_name() on an ended span.")
return
self.name = name
def is_recording(self) -> bool:
return True
def set_status(self, status: trace_api.Status) -> None:
with self._lock:
has_ended = self.end_time is not None
if has_ended:
logger.warning("Calling set_status() on an ended span.")
return
self.status = status
def __exit__(
self,
exc_type: Optional[Type[BaseException]],
exc_val: Optional[BaseException],
exc_tb: Optional[TracebackType],
) -> None:
"""Ends context manager and calls `end` on the `Span`."""
if (
self.status is None
and self._set_status_on_exception
and exc_val is not None
):
self.set_status(
Status(
canonical_code=StatusCanonicalCode.UNKNOWN,
description="{}: {}".format(exc_type.__name__, exc_val),
)
)
super().__exit__(exc_type, exc_val, exc_tb)
def record_exception(self, exception: Exception) -> None:
"""Records an exception as a span event."""
try:
stacktrace = traceback.format_exc()
except Exception: # pylint: disable=broad-except
# workaround for python 3.4, format_exc can raise
# an AttributeError if the __context__ on
# an exception is None
stacktrace = "Exception occurred on stacktrace formatting"
self.add_event(
name="exception",
attributes={
"exception.type": exception.__class__.__name__,
"exception.message": str(exception),
"exception.stacktrace": stacktrace,
},
)
class _Span(Span):
"""Protected implementation of `opentelemetry.trace.Span`.
This constructor should only be used internally.
"""
class Tracer(trace_api.Tracer):
"""See `opentelemetry.trace.Tracer`.
Args:
name: The name of the tracer.
shutdown_on_exit: Register an atexit hook to shut down the tracer when
the application exits.
"""
def __init__(
self,
source: "TracerProvider",
instrumentation_info: InstrumentationInfo,
) -> None:
self.source = source
self.instrumentation_info = instrumentation_info
def start_as_current_span(
self,
name: str,
context: Optional[context_api.Context] = None,
kind: trace_api.SpanKind = trace_api.SpanKind.INTERNAL,
attributes: types.Attributes = None,
links: Sequence[trace_api.Link] = (),
record_exception: bool = True,
) -> Iterator[trace_api.Span]:
span = self.start_span(name, context, kind, attributes, links)
return self.use_span(
span, end_on_exit=True, record_exception=record_exception
)
def start_span( # pylint: disable=too-many-locals
self,
name: str,
context: Optional[context_api.Context] = None,
kind: trace_api.SpanKind = trace_api.SpanKind.INTERNAL,
attributes: types.Attributes = None,
links: Sequence[trace_api.Link] = (),
start_time: Optional[int] = None,
set_status_on_exception: bool = True,
) -> trace_api.Span:
parent_span_context = trace_api.get_current_span(
context
).get_span_context()
if parent_span_context is not None and not isinstance(
parent_span_context, trace_api.SpanContext
):
raise TypeError(
"parent_span_context must be a SpanContext or None."
)
if parent_span_context is None or not parent_span_context.is_valid:
parent_span_context = None
trace_id = self.source.ids_generator.generate_trace_id()
trace_flags = None
trace_state = None
else:
trace_id = parent_span_context.trace_id
trace_flags = parent_span_context.trace_flags
trace_state = parent_span_context.trace_state
# The sampler decides whether to create a real or no-op span at the
# time of span creation. No-op spans do not record events, and are not
# exported.
# The sampler may also add attributes to the newly-created span, e.g.
# to include information about the sampling result.
sampling_result = self.source.sampler.should_sample(
parent_span_context, trace_id, name, attributes, links,
)
trace_flags = (
trace_api.TraceFlags(trace_api.TraceFlags.SAMPLED)
if sampling_result.decision.is_sampled()
else trace_api.TraceFlags(trace_api.TraceFlags.DEFAULT)
)
span_context = trace_api.SpanContext(
trace_id,
self.source.ids_generator.generate_span_id(),
is_remote=False,
trace_flags=trace_flags,
trace_state=trace_state,
)
# Only record if is_recording() is true
if sampling_result.decision.is_recording():
# pylint:disable=protected-access
span = _Span(
name=name,
context=span_context,
parent=parent_span_context,
sampler=self.source.sampler,
resource=self.source.resource,
attributes=sampling_result.attributes.copy(),
span_processor=self.source._active_span_processor,
kind=kind,
links=links,
instrumentation_info=self.instrumentation_info,
set_status_on_exception=set_status_on_exception,
)
span.start(start_time=start_time, parent_context=context)
else:
span = trace_api.DefaultSpan(context=span_context)
return span
@contextmanager
def use_span(
self,
span: trace_api.Span,
end_on_exit: bool = False,
record_exception: bool = True,
) -> Iterator[trace_api.Span]:
try:
token = context_api.attach(context_api.set_value(SPAN_KEY, span))
try:
yield span
finally:
context_api.detach(token)
except Exception as error: # pylint: disable=broad-except
# pylint:disable=protected-access
if isinstance(span, Span):
if record_exception:
span.record_exception(error)
if span.status is None and span._set_status_on_exception:
span.set_status(
Status(
canonical_code=getattr(
error,
EXCEPTION_STATUS_FIELD,
StatusCanonicalCode.UNKNOWN,
),
description="{}: {}".format(
type(error).__name__, error
),
)
)
raise
finally:
if end_on_exit:
span.end()
class TracerProvider(trace_api.TracerProvider):
def __init__(
self,
sampler: sampling.Sampler = sampling.DEFAULT_ON,
resource: Resource = Resource.create({}),
shutdown_on_exit: bool = True,
active_span_processor: Union[
SynchronousMultiSpanProcessor, ConcurrentMultiSpanProcessor
] = None,
ids_generator: trace_api.IdsGenerator = None,
):
self._active_span_processor = (
active_span_processor or SynchronousMultiSpanProcessor()
)
if ids_generator is None:
self.ids_generator = trace_api.RandomIdsGenerator()
else:
self.ids_generator = ids_generator
self.resource = resource
self.sampler = sampler
self._atexit_handler = None
if shutdown_on_exit:
self._atexit_handler = atexit.register(self.shutdown)
def get_tracer(
self,
instrumenting_module_name: str,
instrumenting_library_version: str = "",
) -> "trace_api.Tracer":
if not instrumenting_module_name: # Reject empty strings too.
instrumenting_module_name = "ERROR:MISSING MODULE NAME"
logger.error("get_tracer called with missing module name.")
return Tracer(
self,
InstrumentationInfo(
instrumenting_module_name, instrumenting_library_version
),
)
def add_span_processor(self, span_processor: SpanProcessor) -> None:
"""Registers a new :class:`SpanProcessor` for this `TracerProvider`.
The span processors are invoked in the same order they are registered.
"""
# no lock here because add_span_processor is thread safe for both
# SynchronousMultiSpanProcessor and ConcurrentMultiSpanProcessor.
self._active_span_processor.add_span_processor(span_processor)
def shutdown(self):
"""Shut down the span processors added to the tracer."""
self._active_span_processor.shutdown()
if self._atexit_handler is not None:
atexit.unregister(self._atexit_handler)
self._atexit_handler = None
def force_flush(self, timeout_millis: int = 30000) -> bool:
"""Requests the active span processor to process all spans that have not
yet been processed.
By default force flush is called sequentially on all added span
processors. This means that span processors further back in the list
have less time to flush their spans.
To have span processors flush their spans in parallel it is possible to
initialize the tracer provider with an instance of
`ConcurrentMultiSpanProcessor` at the cost of using multiple threads.
Args:
timeout_millis: The maximum amount of time to wait for spans to be
processed.
Returns:
False if the timeout is exceeded, True otherwise.
"""
return self._active_span_processor.force_flush(timeout_millis)