This repository has been archived by the owner on Sep 21, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 33
/
quantile.rs
271 lines (247 loc) · 11.2 KB
/
quantile.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
use std::cmp::Ordering;
use std::ops::{Add, Div, Mul, Rem, Sub};
use ndarray::{ArrayD, Axis};
use ndarray_stats::interpolate;
use ndarray_stats::QuantileExt;
use noisy_float::types::n64;
use num::{FromPrimitive, ToPrimitive};
use smartnoise_validator::{Float, proto};
use smartnoise_validator::base::{Array, IndexKey, ReleaseNode, Value};
use smartnoise_validator::errors::*;
use smartnoise_validator::utilities::take_argument;
use crate::components::Evaluable;
use crate::NodeArguments;
use std::fmt::Debug;
impl Evaluable for proto::Quantile {
fn evaluate(&self, _privacy_definition: &Option<proto::PrivacyDefinition>, mut arguments: NodeArguments) -> Result<ReleaseNode> {
let data = take_argument(&mut arguments, "data")?.array()?;
Ok(match arguments.remove::<IndexKey>(&"candidates".into()) {
Some(candidates) => {
let lower = arguments.remove(&IndexKey::from("lower"));
let upper = arguments.remove(&IndexKey::from("upper"));
match (candidates.array()?, data) {
(Array::Float(candidates), Array::Float(data)) =>
Value::Array(Array::Float(quantile_utilities_arrayd(
candidates.mapv(|v| n64(v as f64)),
data.mapv(|v| n64(v as f64)),
lower.map(|v| v.array()?.first_float().map(n64)).transpose()?,
upper.map(|v| v.array()?.first_float().map(n64)).transpose()?,
self.alpha as Float)?)),
(Array::Int(candidates), Array::Int(data)) =>
Value::Array(Array::Float(quantile_utilities_arrayd(
candidates,
data,
lower.map(|v| v.array()?.first_int()).transpose()?,
upper.map(|v| v.array()?.first_int()).transpose()?,
self.alpha as Float)?)),
_ => return Err("data must be either f64 or i64".into())
}
},
None => match data {
Array::Float(data) =>
quantile(data.mapv(|v| n64(v as f64)), self.alpha, &self.interpolation)?
.mapv(|v| v.raw() as Float).into(),
Array::Int(data) =>
quantile(data, self.alpha, &self.interpolation)?.into(),
_ => return Err("data must be either f64 or i64".into())
}
}).map(ReleaseNode::new)
}
}
/// Accepts data and returns desired quantile of each column in the data.
///
/// # Arguments
/// * `data` - Array of data for which you would like the quantile.
/// * `alpha` - Desired quantile.
///
/// # Return
/// Quantile of interest for each column of your data.
///
/// # Example
/// ```
/// use ndarray::prelude::*;
/// use smartnoise_runtime::components::quantile::quantile;
/// use noisy_float::types::n64;
/// use smartnoise_validator::Float;
/// let data: ArrayD<Float> = arr2(&[ [0., 1., 2.], [2., 3., 4.] ]).into_dyn();
/// let median = quantile(data.mapv(|v| n64(v as f64)), 0.5, &"midpoint".to_string()).unwrap();
/// println!("{:?}", median);
/// assert_eq!(median, arr1(& [1.0, 2.0, 3.0] ).into_dyn().mapv(|v| n64(v as f64)));
/// ```
pub fn quantile<T: FromPrimitive + Ord + Clone + Sub<Output=T> + Mul<Output=T> + Div<Output=T> + Add<Output=T> + Rem<Output=T> + ToPrimitive>(
mut data: ArrayD<T>, alpha: f64, interpolation: &str
) -> Result<ArrayD<T>> {
if 0. > alpha || alpha > 1. {
return Err("q must be within [0, 1]".into());
}
match match interpolation.to_lowercase().as_str() {
"lower" => data.quantile_axis_mut(Axis(0), n64(alpha), &interpolate::Lower),
"upper" => data.quantile_axis_mut(Axis(0), n64(alpha), &interpolate::Higher),
"midpoint" => data.quantile_axis_mut(Axis(0), n64(alpha), &interpolate::Midpoint),
"nearest" => data.quantile_axis_mut(Axis(0), n64(alpha), &interpolate::Nearest),
"linear" => data.quantile_axis_mut(Axis(0), n64(alpha), &interpolate::Linear),
_ => return Err(format!("interpolation type not recognized: {}", interpolation).into())
} {
Ok(quantiles) => Ok(quantiles),
Err(_) => Err("unable to compute quantiles".into())
}
}
pub fn quantile_utilities_arrayd<T: Ord + Clone + Copy + Debug>(
candidates: ArrayD<T>, data: ArrayD<T>, lower: Option<T>, upper: Option<T>,
alpha: Float
) -> Result<ArrayD<Float>> {
Ok(ndarray::Array::from_shape_vec(candidates.shape(), candidates.gencolumns().into_iter()
.zip(data.gencolumns().into_iter())
.map(|(candidates, column)|
quantile_utilities(candidates.to_vec(), column.to_vec(), lower, upper, alpha))
.collect::<Result<Vec<Vec<_>>>>()?.into_iter()
.flatten().collect::<Vec<_>>())?.into_dyn())
}
/// Compute median utilities of candidates on a vector
/// Formula is n * max(alpha, 1 - alpha) - |(1 - alpha) * #(Z < r) - alpha * #(Z > r)
///
/// # Arguments
/// * `candidates` - values to be scored
/// * `column` - dataset to score against
/// * `alpha` - parameter for quantile. {0: min, 0.5: median, 1: max, ...}
///
/// # Returns
/// Utility for each candidate
fn quantile_utilities<T: Ord + Clone + Copy + Debug>(
mut candidates: Vec<T>, mut column: Vec<T>,
lower: Option<T>, upper: Option<T>, alpha: Float,
) -> Result<Vec<Float>> {
match (lower, upper) {
(Some(l), Some(u)) => {
if l > u { return Err("lower must not be greater than upper".into()) }
candidates.push(l);
candidates.push(u);
column.iter_mut().for_each(|v| *v = l.max(*v).min(u));
}
_ => ()
}
// sort candidates but preserve original ordering
let mut candidates = candidates.into_iter().enumerate().collect::<Vec<(usize, T)>>();
candidates.sort_unstable_by_key(|v| v.1);
column.sort_unstable();
let mut col_idx: usize = 0;
let mut cand_idx: usize = 0;
let mut utilities = Vec::with_capacity(candidates.len());
// prepend utilities for candidates less than smallest value of the dataset
if let Some(v) = column.first() {
let candidate_score = score_candidate(col_idx, column.len() - col_idx, alpha);
while cand_idx < candidates.len() && candidates[cand_idx].1 < *v {
utilities.push(candidate_score);
cand_idx += 1;
}
}
while cand_idx < candidates.len() && col_idx < column.len() {
match column[col_idx].cmp(&candidates[cand_idx].1) {
Ordering::Less => col_idx += 1,
// if ith value is equal, then there are
// i values smaller than the current candidate
// loop to find number of values larger than current candidate
Ordering::Equal => {
let num_lt = col_idx;
let num_gt = loop {
col_idx += 1;
// if all elements are lte, then num_lte == n, so num_gt must be 0
if col_idx == column.len() { break column.len() - col_idx }
// if next value is greater than candidate,
// then num_gt is n - num_lte
if column[col_idx] > candidates[cand_idx].1 {
break column.len() - col_idx
}
};
// score the candidate
let candidate_score = score_candidate(num_lt, num_gt, alpha);
// reuse the score for all equivalent candidates
while cand_idx < candidates.len() && candidates[cand_idx].1 == column[num_lt] {
utilities.push(candidate_score);
cand_idx += 1;
}
}
// if the ith value is larger, then there are
// i values smaller than the current candidate
// n - i values larger
Ordering::Greater => {
utilities.push(score_candidate(col_idx, column.len() - col_idx, alpha));
cand_idx += 1;
}
}
}
// append utilities for candidates greater than the maximum value of the dataset
let candidate_score = score_candidate(column.len(), 0, alpha);
utilities.extend((0..candidates.len() - utilities.len()).map(|_| candidate_score));
// order the utilities by the order of the candidates before they were sorted, and shift the utility
let constant = alpha.max(1. - alpha);
Ok(candidates.into_iter().map(|(idx, _)| constant * column.len() as f64 - utilities[idx]).collect())
}
fn score_candidate(num_lt: usize, num_gt: usize, alpha: f64) -> f64 {
((1. - alpha) * num_lt as f64 - alpha * num_gt as f64).abs()
}
#[cfg(test)]
mod test_quantile_utilities {
use ndarray::arr1;
use noisy_float::types::n64;
use crate::components::quantile::{quantile_utilities, quantile_utilities_arrayd};
#[test]
fn test_scoring() {
// no candidates, no score
assert_eq!(
quantile_utilities::<i64>(vec![], vec![], None, None, 0.5).unwrap(),
Vec::<f64>::new());
assert_eq!(
quantile_utilities(vec![], vec![1], None, None, 0.5).unwrap(),
Vec::<f64>::new());
// no data, score should be zero
assert_eq!(
quantile_utilities(vec![0], vec![], None, None, 0.5).unwrap(),
vec![0.]);
// 0.5 - 0.
assert_eq!(
quantile_utilities(vec![0], vec![0], None, None, 0.5).unwrap(),
vec![0.5]);
// 0.5 - |0.5 * 0. - 0.5 * 0.|
// 0.5 - |0.5 * 1. - 0.5 * 0.|
// 0.5 - |0.5 * 1. - 0.5 * 0.|
assert_eq!(
quantile_utilities(vec![0, 1, 2], vec![0], None, None, 0.5).unwrap(),
vec![0.5, 0., 0.]);
// 1.5 - |0.5 * 0. - 0.5 * 0.|
// 1.5 - |0.5 * 3. - 0.5 * 0.|
// 1.5 - |0.5 * 3. - 0.5 * 0.|
assert_eq!(
quantile_utilities(vec![0, 1, 2], vec![0, 0, 0], None, None, 0.5).unwrap(),
vec![1.5, 0., 0.]);
// // 1.5 - |0.5 * 0. - 0.5 * 3.|
// // 1.5 - |0.5 * 0. - 0.5 * 1.|
// // 1.5 - |0.5 * 0. - 0.5 * 1.|
assert_eq!(
quantile_utilities(vec![0, 1, 1], vec![1, 1, 2], None, None, 0.5).unwrap(),
vec![0., 1., 1.]);
assert_eq!(
quantile_utilities(vec![1, 0, 1], vec![2, 1, 1], None, None, 0.5).unwrap(),
vec![1., 0., 1.]);
}
#[test]
fn utility_arrayd() {
// 5. is best
// -10: 12 * 0.5 - |.5 * 0 - .5 * 12| = 0.0
// -5: 12 * 0.5 - |.5 * 0 - .5 * 12| = 0.0
// 0: 12 * 0.5 - |.5 * 0 - .5 * 11| = 0.5
// 2: 12 * 0.5 - |.5 * 1 - .5 * 11| = 1.0
// 5: 12 * 0.5 - |.5 * 3 - .5 * 6 | = 4.5
// 7: 12 * 0.5 - |.5 * 8 - .5 * 2 | = 3.0
// 10: 12 * 0.5 - |.5 * 0 - .5 * 11| = 0.5
// 12: 12 * 0.5 - |.5 * 0 - .5 * 12| = 0.0
let utilities = quantile_utilities_arrayd(
arr1(&[-10., -5., 0., 2., 5., 7., 10., 12.]).into_dyn().mapv(n64),
arr1(&[0., 10., 5., 7., 6., 4., 3., 8., 7., 6., 5., 5.]).into_dyn().mapv(n64),
None, None,
0.5,
).unwrap().into_dimensionality::<ndarray::Ix1>().unwrap().to_vec();
assert_eq!(utilities, vec![0., 0., 0.5, 1.0, 4.5, 3.0, 0.5, 0.]);
// println!("utilities {:?}", utilities);
}
}