This repository has been archived by the owner on Sep 21, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 33
/
theil_sen.rs
192 lines (160 loc) · 6.57 KB
/
theil_sen.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
use indexmap::indexmap;
use ndarray;
use smartnoise_validator::{Float, Integer, proto};
use smartnoise_validator::base::{ReleaseNode, Value};
use smartnoise_validator::errors::*;
use smartnoise_validator::utilities::take_argument;
use crate::components::Evaluable;
use crate::NodeArguments;
use proto::privacy_definition::Neighboring;
use crate::utilities::noise::shuffle;
impl Evaluable for proto::TheilSen {
fn evaluate(&self, privacy_definition: &Option<proto::PrivacyDefinition>, mut arguments: NodeArguments) -> Result<ReleaseNode> {
// theil-sen inputs must be 1d
let data_x = take_argument(&mut arguments, "data_x")?
.array()?.float()?.into_dimensionality::<ndarray::Ix1>()?.to_vec();
let data_y = take_argument(&mut arguments, "data_y")?
.array()?.float()?.into_dimensionality::<ndarray::Ix1>()?.to_vec();
let privacy_definition = privacy_definition.as_ref()
.ok_or_else(|| Error::from("privacy_definition must be known"))?;
let neighboring = Neighboring::from_i32(privacy_definition.neighboring)
.ok_or_else(|| Error::from("neighboring definition must be either \"AddRemove\" or \"Substitute\""))?;
let enforce_constant_time = privacy_definition.protect_elapsed_time;
let (slopes, intercepts) = match self.implementation.to_lowercase().as_str() {
"theil-sen" => theil_sen_transform(&data_x, &data_y, neighboring),
"theil-sen-k-match" => theil_sen_transform_k_match(
&data_x, &data_y,
take_argument(&mut arguments, "k")?.array()?.first_int()?,
neighboring, enforce_constant_time),
_ => return Err(Error::from("Invalid implementation"))
}?;
Ok(ReleaseNode::new(Value::Dataframe(indexmap![
"slope".into() => ndarray::Array::from(slopes).into_dyn().into(),
"intercept".into() => ndarray::Array::from(intercepts).into_dyn().into()
])))
}
}
/// Calculate slope between two points
///
fn compute_slope(x: &(Float, Float), y: &(Float, Float)) -> Float {
(y.1 - y.0) / (x.1 - x.0)
}
/// Calculate y intercept from two points and a slope
///
fn compute_intercept(x: &(Float, Float), y: &(Float, Float), slope: Float) -> Float {
(y.0 + y.1) / 2. - slope * (x.0 + x.1) / 2.
}
/// Compute parameters between all pairs of points where defined
///
pub fn theil_sen_transform(
x: &Vec<Float>, y: &Vec<Float>,
neighboring: Neighboring
) -> Result<(Vec<Float>, Vec<Float>)> {
if x.len() != y.len() {
return Err("predictors and targets must share same length".into())
}
let n = x.len();
let mut slopes: Vec<Float> = Vec::new();
let mut intercepts: Vec<Float> = Vec::new();
for p in 0..n as usize {
for q in p + 1..n as usize {
let x_pair = (x[p], x[q]);
let y_pair = (y[p], y[q]);
let slope = compute_slope(&x_pair, &y_pair);
if neighboring == Neighboring::AddRemove && !slope.is_finite() {
continue
}
slopes.push(slope);
intercepts.push(compute_intercept(&x_pair, &y_pair, slope));
}
}
Ok((slopes, intercepts))
}
/// Implementation from paper
/// Separate data into two bins, match members of each bin to form pairs
/// Note: k is number of trials here
pub fn theil_sen_transform_k_match(
x: &Vec<Float>, y: &Vec<Float>, k: Integer,
neighboring: Neighboring,
enforce_constant_time: bool
) -> Result<(Vec<Float>, Vec<Float>)> {
if x.len() != y.len() {
return Err("x and y must be the same length".into())
}
let n = x.len();
let mut slopes: Vec<Float> = Vec::new();
let mut intercepts: Vec<Float> = Vec::new();
for _iteration in 0..k {
let shuffled: Vec<(Float, Float)> = shuffle(x.iter().copied()
.zip(y.iter().copied()).collect(), enforce_constant_time)?;
// For n odd, the last data point in "shuffled" will be ignored
let midpoint = n / 2;
for i in 0..midpoint {
let x_pair = (shuffled[i].0, shuffled[midpoint + i].0);
let y_pair = (shuffled[i].1, shuffled[midpoint + i].1);
let slope = compute_slope(&x_pair, &y_pair);
if neighboring == Neighboring::AddRemove && !slope.is_finite() {
continue
}
slopes.push(slope);
intercepts.push(compute_intercept(&x_pair, &y_pair, slope));
}
}
Ok((slopes, intercepts))
}
#[cfg(test)]
pub mod tests {
use crate::utilities::noise;
use super::*;
pub fn test_dataset(n: Integer) -> (Vec<Float>, Vec<Float>) {
let x = (0..n).map(|i| i as f64 + noise::sample_gaussian(0., 0.01, false).unwrap()).collect();
let y = (0..n).map(|i| (2 * i) as f64 + noise::sample_gaussian(0., 0.01, false).unwrap()).collect();
(x, y)
}
pub fn median(x: &Vec<Float>) -> Float {
let mut tmp: Vec<Float> = x.clone();
tmp.sort_by(|a, b| a.partial_cmp(b).unwrap());
let mid = tmp.len() / 2;
if tmp.len() % 2 == 0 {
(tmp[mid - 1] + tmp[mid]) / 2.0
} else {
tmp[mid]
}
}
/// Non-DP implementation of Theil-Sen to test DP version against
///
pub fn public_theil_sen(x: &Vec<Float>, y: &Vec<Float>) -> (Float, Float) {
// Slope m is median of slope calculated between all pairs of
// non-identical points
let (slopes, intercepts) = theil_sen_transform(x, y, Neighboring::AddRemove).unwrap();
let slope = median(&slopes);
let intercept = median(&intercepts);
return (slope, intercept)
}
#[test]
fn theil_sen_length() {
let (x, y) = test_dataset(10);
let (slopes, intercepts) = theil_sen_transform(&x, &y, Neighboring::AddRemove).unwrap();
let n = x.len() as Integer;
assert_eq!(slopes.len() as Integer, n * (n - 1) / 2);
assert_eq!(intercepts.len() as Integer, n * (n - 1) / 2);
}
#[test]
fn theil_sen_value() {
// Ensure non-DP version gives y = 2x for this data
let (x, y) = test_dataset(10);
let (slope, intercept) = public_theil_sen(&x, &y);
assert!((2.0 - slope).abs() <= 0.1);
assert!((0.0 - intercept).abs() <= 0.1);
}
// MS: I busted this test
// #[test]
// fn intercept_estimation_test() {
//
// let (x, y) = test_dataset(1000);
// x.into_iter().tuple_windows()
// .zip(y.into_iter().tuple_windows())
// .map(|(x, y)| compute_intercept(&x, &y, 2.0))
// .for_each(|intercept| assert!(intercept.abs() <= 5.0));
// }
}