-
Notifications
You must be signed in to change notification settings - Fork 25
/
pytorch_lightning_example.py
97 lines (77 loc) · 3.35 KB
/
pytorch_lightning_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Copyright 2023 Neal Lathia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from libraries.util.datasets import load_regression_dataset
from libraries.util.domains import DIABETES_DOMAIN
from sklearn.metrics import mean_squared_error
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from modelstore.model_store import ModelStore
# pylint: disable=missing-class-docstring
class ExampleLightningNet(pl.LightningModule):
def __init__(self):
super(ExampleLightningNet, self).__init__()
self.linear = nn.Linear(10, 1)
def forward(self, x):
return self.linear(x)
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.linear(x)
train_loss = F.mse_loss(y_hat, y)
self.log("train_loss", train_loss, on_epoch=True, prog_bar=True)
return train_loss
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self.linear(x)
val_loss = F.mse_loss(y_hat, y)
return val_loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters())
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.05)
return [optimizer], [scheduler]
def _train_example_model() -> ExampleLightningNet:
# Load the data
X_train, X_test, y_train, y_test = load_regression_dataset(as_numpy=True)
data_set = TensorDataset(X_test, y_test)
val_dataloader = DataLoader(data_set)
data_set = TensorDataset(X_train, y_train)
train_dataloader = DataLoader(data_set)
# Train the model
model = ExampleLightningNet()
with tempfile.TemporaryDirectory() as tmp_dir:
trainer = pl.Trainer(max_epochs=5, default_root_dir=tmp_dir)
trainer.fit(model, train_dataloader, val_dataloader)
results = mean_squared_error(y_test, model(X_test).detach().numpy())
print(f"🔍 Fit model MSE={results}.")
return model, trainer
def train_and_upload(modelstore: ModelStore) -> dict:
# Train a PyTorch model
model, trainer = _train_example_model()
# Upload the model to the model store
print(
f'⤴️ Uploading the pytorch lightning model to the "{DIABETES_DOMAIN}" domain.'
)
meta_data = modelstore.upload(DIABETES_DOMAIN, model=model, trainer=trainer)
return meta_data
def load_and_test(modelstore: ModelStore, model_domain: str, model_id: str):
# Load the model back into memory!
print(f'⤵️ Loading the pytorch lightning "{model_domain}" domain model={model_id}')
model = modelstore.load(model_domain, model_id)
model.eval()
_, X_test, _, y_test = load_regression_dataset(as_numpy=True)
results = mean_squared_error(y_test, model(X_test).detach().numpy())
print(f"🔍 Loaded model MSE={results}.")