-
Notifications
You must be signed in to change notification settings - Fork 25
/
tensorflow_example.py
61 lines (49 loc) · 2.19 KB
/
tensorflow_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright 2023 Neal Lathia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
from libraries.util.datasets import load_regression_dataset
from libraries.util.domains import DIABETES_DOMAIN
from sklearn.metrics import mean_squared_error
from modelstore.model_store import ModelStore
def _train_example_model() -> tf.keras.models.Sequential:
# Load the data
X_train, X_test, y_train, y_test = load_regression_dataset()
# Train a model
model = tf.keras.models.Sequential(
[
tf.keras.layers.Dense(5, activation="relu", input_shape=(10,)),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(1),
]
)
model.compile(optimizer="adam", loss="mean_squared_error")
model.fit(X_train, y_train, epochs=10)
results = mean_squared_error(y_test, model.predict(X_test))
print(f"🔍 Trained model MSE={results}.")
return model
def train_and_upload(modelstore: ModelStore) -> dict:
# Train a model
model = _train_example_model()
# Upload the model to the model store
print(f'⤴️ Uploading the tensorflow model to the "{DIABETES_DOMAIN}" domain.')
meta_data = modelstore.upload(DIABETES_DOMAIN, model=model)
return meta_data
def load_and_test(modelstore: ModelStore, model_domain: str, model_id: str):
# Load the model back into memory!
print(f'⤵️ Loading the tensorflow "{model_domain}" domain model={model_id}')
model = modelstore.load(model_domain, model_id)
# Run some test predictions
_, X_test, _, y_test = load_regression_dataset()
results = mean_squared_error(y_test, model.predict(X_test))
print(f"🔍 Loaded model MSE={results}.")