diff --git a/docs/source/algorithms.md b/docs/source/algorithms.md index 006e25402..4ec46b6b5 100644 --- a/docs/source/algorithms.md +++ b/docs/source/algorithms.md @@ -392,7 +392,7 @@ install optimagic. .. warning:: In our benchmark using a quadratic objective function, the trust_constr algorithm did not find the optimum very precisely (less than 4 decimal places). - If you require high precision, you should refine an optimum found with Powell + If you require high precision, you should refine an optimum found with trust_constr with another local optimizer. .. note:: @@ -907,12 +907,6 @@ We implement a few algorithms from scratch. They are currently considered experi and therefore may require fewer iterations to arrive at a local optimum than Nelder-Mead. - The criterion function :func:`func` should return a dictionary with the following - fields: - - 1. ``"value"``: The sum of squared (potentially weighted) errors. - 2. ``"root_contributions"``: An array containing the root (weighted) contributions. - Scaling the problem is necessary such that bounds correspond to the unit hypercube :math:`[0, 1]^n`. For unconstrained problems, scale each parameter such that unit changes in parameters result in similar order-of-magnitude changes in the criterion @@ -1015,12 +1009,6 @@ need to have [petsc4py](https://pypi.org/project/petsc4py/) installed. and therefore may require fewer iterations to arrive at a local optimum than Nelder-Mead. - The criterion function :func:`func` should return a dictionary with the following - fields: - - 1. ``"value"``: The sum of squared (potentially weighted) errors. - 2. ``"root_contributions"``: An array containing the root (weighted) contributions. - Scaling the problem is necessary such that bounds correspond to the unit hypercube :math:`[0, 1]^n`. For unconstrained problems, scale each parameter such that unit changes in parameters result in similar order-of-magnitude changes in the criterion diff --git a/docs/source/how_to/how_to_algorithm_selection.ipynb b/docs/source/how_to/how_to_algorithm_selection.ipynb index d6bbeb15c..0dfc58307 100644 --- a/docs/source/how_to/how_to_algorithm_selection.ipynb +++ b/docs/source/how_to/how_to_algorithm_selection.ipynb @@ -52,7 +52,7 @@ " E[\"Can you exploit
a least-squares
structure?\"] -- yes --> F[\"differentiable?\"]\n", " E[\"Can you exploit
a least-squares
structure?\"] -- no --> G[\"differentiable?\"]\n", "\n", - " F[\"differentiable?\"] -- yes --> H[\"scipy_ls_lm
scipy_ls_trf
scipy_ls_dogleg\"]\n", + " F[\"differentiable?\"] -- yes --> H[\"scipy_ls_lm
scipy_ls_trf
scipy_ls_dogbox\"]\n", " F[\"differentiable?\"] -- no --> I[\"nag_dflos
pounders
tao_pounders\"]\n", "\n", " G[\"differentiable?\"] -- yes --> J[\"scipy_lbfgsb
nlopt_lbfgsb
fides\"]\n", diff --git a/src/optimagic/optimizers/_pounders/gqtpar.py b/src/optimagic/optimizers/_pounders/gqtpar.py index bf9eb68dd..04648f7f9 100644 --- a/src/optimagic/optimizers/_pounders/gqtpar.py +++ b/src/optimagic/optimizers/_pounders/gqtpar.py @@ -55,7 +55,7 @@ def gqtpar(model, x_candidate, *, k_easy=0.1, k_hard=0.2, maxiter=200): - ``linear_terms``, a np.ndarray of shape (n,) and - ``square_terms``, a np.ndarray of shape (n,n). x_candidate (np.ndarray): Initial guess for the solution of the subproblem. - k_easy (float): topping criterion for the "easy" case. + k_easy (float): Stopping criterion for the "easy" case. k_hard (float): Stopping criterion for the "hard" case. maxiter (int): Maximum number of iterations to perform. If reached, terminate. diff --git a/src/optimagic/optimizers/_pounders/pounders_auxiliary.py b/src/optimagic/optimizers/_pounders/pounders_auxiliary.py index d0f167c2f..223c028fe 100644 --- a/src/optimagic/optimizers/_pounders/pounders_auxiliary.py +++ b/src/optimagic/optimizers/_pounders/pounders_auxiliary.py @@ -240,7 +240,7 @@ def solve_subproblem( gtol_rel_conjugate_gradient (float): Convergence tolerance for the relative gradient norm in the conjugate gradient step of the trust-region subproblem ("bntr"). - k_easy (float): topping criterion for the "easy" case in the trust-region + k_easy (float): Stopping criterion for the "easy" case in the trust-region subproblem ("gqtpar"). k_hard (float): Stopping criterion for the "hard" case in the trust-region subproblem ("gqtpar"). diff --git a/src/optimagic/optimizers/pounders.py b/src/optimagic/optimizers/pounders.py index 24b8b723a..87b652225 100644 --- a/src/optimagic/optimizers/pounders.py +++ b/src/optimagic/optimizers/pounders.py @@ -262,7 +262,7 @@ def internal_solve_pounders( gtol_rel_conjugate_gradient_sub (float): Convergence tolerance for the relative gradient norm in the conjugate gradient step of the trust-region subproblem if "cg" is used as ``conjugate_gradient_method_sub`` ("bntr"). - k_easy_sub (float): topping criterion for the "easy" case in the trust-region + k_easy_sub (float): Stopping criterion for the "easy" case in the trust-region subproblem ("gqtpar"). k_hard_sub (float): Stopping criterion for the "hard" case in the trust-region subproblem ("gqtpar").