forked from VDIGPKU/M2Det
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
169 lines (160 loc) · 6.78 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import cv2
import numpy as np
import time
from torch.multiprocessing import Pool
from utils.nms_wrapper import nms
from utils.timer import Timer
from configs.CC import Config
import argparse
from layers.functions import Detect, PriorBox
from m2det import build_net
from data import BaseTransform
from utils.core import *
from utils.pycocotools.coco import COCO
parser = argparse.ArgumentParser(description='M2Det Testing')
parser.add_argument('-c', '--config', default='configs/m2det320_vgg.py', type=str)
parser.add_argument('-f', '--directory', default='imgs/', help='the path to demo images')
parser.add_argument('-m', '--trained_model', default=None, type=str, help='Trained state_dict file path to open')
parser.add_argument('--video', default=False, type=bool, help='videofile mode')
parser.add_argument('--cam', default=-1, type=int, help='camera device id')
parser.add_argument('--show', action='store_true', help='Whether to display the images')
args = parser.parse_args()
print_info(' ----------------------------------------------------------------------\n'
'| M2Det Demo Program |\n'
' ----------------------------------------------------------------------', ['yellow','bold'])
global cfg
cfg = Config.fromfile(args.config)
anchor_config = anchors(cfg)
print_info('The Anchor info: \n{}'.format(anchor_config))
priorbox = PriorBox(anchor_config)
net = build_net('test',
size = cfg.model.input_size,
config = cfg.model.m2det_config)
init_net(net, cfg, args.trained_model)
print_info('===> Finished constructing and loading model',['yellow','bold'])
net.eval()
with torch.no_grad():
priors = priorbox.forward()
if cfg.test_cfg.cuda:
net = net.cuda()
priors = priors.cuda()
cudnn.benchmark = True
else:
net = net.cpu()
_preprocess = BaseTransform(cfg.model.input_size, cfg.model.rgb_means, (2, 0, 1))
detector = Detect(cfg.model.m2det_config.num_classes, cfg.loss.bkg_label, anchor_config)
def _to_color(indx, base):
""" return (b, r, g) tuple"""
base2 = base * base
b = 2 - indx / base2
r = 2 - (indx % base2) / base
g = 2 - (indx % base2) % base
return b * 127, r * 127, g * 127
base = int(np.ceil(pow(cfg.model.m2det_config.num_classes, 1. / 3)))
colors = [_to_color(x, base) for x in range(cfg.model.m2det_config.num_classes)]
cats = [_.strip().split(',')[-1] for _ in open('data/coco_labels.txt','r').readlines()]
labels = tuple(['__background__'] + cats)
def draw_detection(im, bboxes, scores, cls_inds, fps, thr=0.2):
imgcv = np.copy(im)
h, w, _ = imgcv.shape
for i, box in enumerate(bboxes):
if scores[i] < thr:
continue
cls_indx = int(cls_inds[i])
box = [int(_) for _ in box]
thick = int((h + w) / 300)
cv2.rectangle(imgcv,
(box[0], box[1]), (box[2], box[3]),
colors[cls_indx], thick)
mess = '%s: %.3f' % (labels[cls_indx], scores[i])
cv2.putText(imgcv, mess, (box[0], box[1] - 7),
0, 1e-3 * h, colors[cls_indx], thick // 3)
if fps >= 0:
cv2.putText(imgcv, '%.2f' % fps + ' fps', (w - 160, h - 15), 0, 2e-3 * h, (255, 255, 255), thick // 2)
return imgcv
im_path = args.directory
cam = args.cam
video = args.video
if cam >= 0:
capture = cv2.VideoCapture(cam)
video_path = './cam'
if video:
while True:
video_path = input('Please enter video path: ')
capture = cv2.VideoCapture(video_path)
if capture.isOpened():
break
else:
print('No file!')
if cam >= 0 or video:
video_name = os.path.splitext(video_path)
fourcc = cv2.VideoWriter_fourcc('m','p','4','v')
out_video = cv2.VideoWriter(video_name[0] + '_m2det.mp4', fourcc, capture.get(cv2.CAP_PROP_FPS), (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))))
im_fnames = sorted((fname for fname in os.listdir(im_path) if os.path.splitext(fname)[-1] == '.jpg'))
im_fnames = (os.path.join(im_path, fname) for fname in im_fnames)
im_iter = iter(im_fnames)
while True:
if cam < 0 and not video:
try:
fname = next(im_iter)
except StopIteration:
break
if 'm2det' in fname: continue # ignore the detected images
image = cv2.imread(fname, cv2.IMREAD_COLOR)
else:
ret, image = capture.read()
if not ret:
cv2.destroyAllWindows()
capture.release()
break
loop_start = time.time()
w,h = image.shape[1],image.shape[0]
img = _preprocess(image).unsqueeze(0)
if cfg.test_cfg.cuda:
img = img.cuda()
scale = torch.Tensor([w,h,w,h])
out = net(img)
boxes, scores = detector.forward(out, priors)
boxes = (boxes[0]*scale).cpu().numpy()
scores = scores[0].cpu().numpy()
allboxes = []
for j in range(1, cfg.model.m2det_config.num_classes):
inds = np.where(scores[:,j] > cfg.test_cfg.score_threshold)[0]
if len(inds) == 0:
continue
c_bboxes = boxes[inds]
c_scores = scores[inds, j]
c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype(np.float32, copy=False)
soft_nms = cfg.test_cfg.soft_nms
keep = nms(c_dets, cfg.test_cfg.iou, force_cpu = soft_nms) #min_thresh, device_id=0 if cfg.test_cfg.cuda else None)
keep = keep[:cfg.test_cfg.keep_per_class]
c_dets = c_dets[keep, :]
allboxes.extend([_.tolist()+[j] for _ in c_dets])
loop_time = time.time() - loop_start
allboxes = np.array(allboxes)
boxes = allboxes[:,:4]
scores = allboxes[:,4]
cls_inds = allboxes[:,5]
print('\n'.join(['pos:{}, ids:{}, score:{:.3f}'.format('(%.1f,%.1f,%.1f,%.1f)' % (o[0],o[1],o[2],o[3]) \
,labels[int(oo)],ooo) for o,oo,ooo in zip(boxes,cls_inds,scores)]))
fps = 1.0 / float(loop_time) if cam >= 0 or video else -1
im2show = draw_detection(image, boxes, scores, cls_inds, fps)
# print bbox_pred.shape, iou_pred.shape, prob_pred.shape
if im2show.shape[0] > 1100:
im2show = cv2.resize(im2show,
(int(1000. * float(im2show.shape[1]) / im2show.shape[0]), 1000))
if args.show:
cv2.imshow('test', im2show)
if cam < 0 and not video:
cv2.waitKey(5000)
else:
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.destroyAllWindows()
out_video.release()
capture.release()
break
if cam < 0 and not video:
cv2.imwrite('{}_m2det.jpg'.format(fname.split('.')[0]), im2show)
else:
out_video.write(im2show)