-
Notifications
You must be signed in to change notification settings - Fork 561
/
ghostnet.py
409 lines (355 loc) · 12.5 KB
/
ghostnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
"""
GhostNet for ImageNet-1K, implemented in PyTorch.
Original paper: 'GhostNet: More Features from Cheap Operations,' https://arxiv.org/abs/1911.11907.
"""
__all__ = ['GhostNet', 'ghostnet']
import os
import math
import torch
import torch.nn as nn
from .common import round_channels, conv1x1, conv1x1_block, conv3x3_block, dwconv3x3_block, dwconv5x5_block,\
dwsconv3x3_block, SEBlock
class GhostHSigmoid(nn.Module):
"""
Approximated sigmoid function, specific for GhostNet.
"""
def forward(self, x):
return torch.clamp(x, min=0.0, max=1.0)
class GhostConvBlock(nn.Module):
"""
GhostNet specific convolution block.
Parameters:
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
activation : function or str or None, default nn.ReLU(inplace=True)
Activation function or name of activation function.
"""
def __init__(self,
in_channels,
out_channels,
activation=(lambda: nn.ReLU(inplace=True))):
super(GhostConvBlock, self).__init__()
main_out_channels = math.ceil(0.5 * out_channels)
cheap_out_channels = out_channels - main_out_channels
self.main_conv = conv1x1_block(
in_channels=in_channels,
out_channels=main_out_channels,
activation=activation)
self.cheap_conv = dwconv3x3_block(
in_channels=main_out_channels,
out_channels=cheap_out_channels,
activation=activation)
def forward(self, x):
x = self.main_conv(x)
y = self.cheap_conv(x)
return torch.cat((x, y), dim=1)
class GhostExpBlock(nn.Module):
"""
GhostNet expansion block for residual path in GhostNet unit.
Parameters:
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
stride : int or tuple/list of 2 int
Strides of the convolution.
use_kernel3 : bool
Whether to use 3x3 (instead of 5x5) kernel.
exp_factor : float
Expansion factor.
use_se : bool
Whether to use SE-module.
"""
def __init__(self,
in_channels,
out_channels,
stride,
use_kernel3,
exp_factor,
use_se):
super(GhostExpBlock, self).__init__()
self.use_dw_conv = (stride != 1)
self.use_se = use_se
mid_channels = int(math.ceil(exp_factor * in_channels))
self.exp_conv = GhostConvBlock(
in_channels=in_channels,
out_channels=mid_channels)
if self.use_dw_conv:
dw_conv_class = dwconv3x3_block if use_kernel3 else dwconv5x5_block
self.dw_conv = dw_conv_class(
in_channels=mid_channels,
out_channels=mid_channels,
stride=stride,
activation=None)
if self.use_se:
self.se = SEBlock(
channels=mid_channels,
reduction=4,
out_activation=GhostHSigmoid())
self.pw_conv = GhostConvBlock(
in_channels=mid_channels,
out_channels=out_channels,
activation=None)
def forward(self, x):
x = self.exp_conv(x)
if self.use_dw_conv:
x = self.dw_conv(x)
if self.use_se:
x = self.se(x)
x = self.pw_conv(x)
return x
class GhostUnit(nn.Module):
"""
GhostNet unit.
Parameters:
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
stride : int or tuple/list of 2 int
Strides of the second convolution layer.
use_kernel3 : bool
Whether to use 3x3 (instead of 5x5) kernel.
exp_factor : float
Expansion factor.
use_se : bool
Whether to use SE-module.
"""
def __init__(self,
in_channels,
out_channels,
stride,
use_kernel3,
exp_factor,
use_se):
super(GhostUnit, self).__init__()
self.resize_identity = (in_channels != out_channels) or (stride != 1)
self.body = GhostExpBlock(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
use_kernel3=use_kernel3,
exp_factor=exp_factor,
use_se=use_se)
if self.resize_identity:
self.identity_conv = dwsconv3x3_block(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
pw_activation=None)
def forward(self, x):
if self.resize_identity:
identity = self.identity_conv(x)
else:
identity = x
x = self.body(x)
x = x + identity
return x
class GhostClassifier(nn.Module):
"""
GhostNet classifier.
Parameters:
----------
in_channels : int
Number of input channels.
out_channels : int
Number of output channels.
mid_channels : int
Number of middle channels.
"""
def __init__(self,
in_channels,
out_channels,
mid_channels):
super(GhostClassifier, self).__init__()
self.conv1 = conv1x1_block(
in_channels=in_channels,
out_channels=mid_channels)
self.conv2 = conv1x1(
in_channels=mid_channels,
out_channels=out_channels,
bias=True)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
class GhostNet(nn.Module):
"""
GhostNet model from 'GhostNet: More Features from Cheap Operations,' https://arxiv.org/abs/1911.11907.
Parameters:
----------
channels : list of list of int
Number of output channels for each unit.
init_block_channels : int
Number of output channels for the initial unit.
final_block_channels : int
Number of output channels for the final block of the feature extractor.
classifier_mid_channels : int
Number of middle channels for classifier.
kernels3 : list of list of int/bool
Using 3x3 (instead of 5x5) kernel for each unit.
exp_factors : list of list of int
Expansion factor for each unit.
use_se : list of list of int/bool
Using SE-block flag for each unit.
first_stride : bool
Whether to use stride for the first stage.
in_channels : int, default 3
Number of input channels.
in_size : tuple of two ints, default (224, 224)
Spatial size of the expected input image.
num_classes : int, default 1000
Number of classification classes.
"""
def __init__(self,
channels,
init_block_channels,
final_block_channels,
classifier_mid_channels,
kernels3,
exp_factors,
use_se,
first_stride,
in_channels=3,
in_size=(224, 224),
num_classes=1000):
super(GhostNet, self).__init__()
self.in_size = in_size
self.num_classes = num_classes
self.features = nn.Sequential()
self.features.add_module("init_block", conv3x3_block(
in_channels=in_channels,
out_channels=init_block_channels,
stride=2))
in_channels = init_block_channels
for i, channels_per_stage in enumerate(channels):
stage = nn.Sequential()
for j, out_channels in enumerate(channels_per_stage):
stride = 2 if (j == 0) and ((i != 0) or first_stride) else 1
use_kernel3 = kernels3[i][j] == 1
exp_factor = exp_factors[i][j]
use_se_flag = use_se[i][j] == 1
stage.add_module("unit{}".format(j + 1), GhostUnit(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
use_kernel3=use_kernel3,
exp_factor=exp_factor,
use_se=use_se_flag))
in_channels = out_channels
self.features.add_module("stage{}".format(i + 1), stage)
self.features.add_module("final_block", conv1x1_block(
in_channels=in_channels,
out_channels=final_block_channels))
in_channels = final_block_channels
self.features.add_module("final_pool", nn.AvgPool2d(
kernel_size=7,
stride=1))
self.output = GhostClassifier(
in_channels=in_channels,
out_channels=num_classes,
mid_channels=classifier_mid_channels)
self._init_params()
def _init_params(self):
for name, module in self.named_modules():
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
if module.bias is not None:
nn.init.constant_(module.bias, 0)
def forward(self, x):
x = self.features(x)
x = self.output(x)
x = x.view(x.size(0), -1)
return x
def get_ghostnet(width_scale=1.0,
model_name=None,
pretrained=False,
root=os.path.join("~", ".torch", "models"),
**kwargs):
"""
Create GhostNet model with specific parameters.
Parameters:
----------
width_scale : float, default 1.0
Scale factor for width of layers.
model_name : str or None, default None
Model name for loading pretrained model.
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.torch/models'
Location for keeping the model parameters.
"""
init_block_channels = 16
channels = [[16], [24, 24], [40, 40], [80, 80, 80, 80, 112, 112], [160, 160, 160, 160, 160]]
kernels3 = [[1], [1, 1], [0, 0], [1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0]]
exp_factors = [[1], [3, 3], [3, 3], [6, 2.5, 2.3, 2.3, 6, 6], [6, 6, 6, 6, 6]]
use_se = [[0], [0, 0], [1, 1], [0, 0, 0, 0, 1, 1], [1, 0, 1, 0, 1]]
final_block_channels = 960
classifier_mid_channels = 1280
first_stride = False
if width_scale != 1.0:
channels = [[round_channels(cij * width_scale, divisor=4) for cij in ci] for ci in channels]
init_block_channels = round_channels(init_block_channels * width_scale, divisor=4)
if width_scale > 1.0:
final_block_channels = round_channels(final_block_channels * width_scale, divisor=4)
net = GhostNet(
channels=channels,
init_block_channels=init_block_channels,
final_block_channels=final_block_channels,
classifier_mid_channels=classifier_mid_channels,
kernels3=kernels3,
exp_factors=exp_factors,
use_se=use_se,
first_stride=first_stride,
**kwargs)
if pretrained:
if (model_name is None) or (not model_name):
raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.")
from .model_store import download_model
download_model(
net=net,
model_name=model_name,
local_model_store_dir_path=root)
return net
def ghostnet(**kwargs):
"""
GhostNet model from 'GhostNet: More Features from Cheap Operations,' https://arxiv.org/abs/1911.11907.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.torch/models'
Location for keeping the model parameters.
"""
return get_ghostnet(model_name="ghostnet", **kwargs)
def _calc_width(net):
import numpy as np
net_params = filter(lambda p: p.requires_grad, net.parameters())
weight_count = 0
for param in net_params:
weight_count += np.prod(param.size())
return weight_count
def _test():
import torch
pretrained = False
models = [
ghostnet,
]
for model in models:
net = model(pretrained=pretrained)
# net.train()
net.eval()
weight_count = _calc_width(net)
print("m={}, {}".format(model.__name__, weight_count))
assert (model != ghostnet or weight_count == 5180840)
x = torch.randn(1, 3, 224, 224)
y = net(x)
y.sum().backward()
assert (tuple(y.size()) == (1, 1000))
if __name__ == "__main__":
_test()