Skip to content

Latest commit

 

History

History
38 lines (35 loc) · 1.49 KB

README.md

File metadata and controls

38 lines (35 loc) · 1.49 KB

OD_dataset_conversion_scripts

Object detection dataset conversion scripts

  1. PASCAL VOC => YOLO: voc2yolo.py

  2. YOLO => PASCAL VOC: yolo2voc.py

  3. PASCAL VOC => COCO: voc2coco.py

  4. COCO => PASCAL VOC

    Use utils_cv.detection.data.coco2voc to complete this conversion. The process is listed below:

    • Install Microsoft utils_cv package: pip install git+https://github.com/microsoft/ComputerVision.git@master#egg=utils_cv
    • Import fumction: from utils_cv.detection.data import coco2voc
    • Function Signature:
    Signature:
    coco2voc(
        anno_path: str,
        output_dir: str,
        anno_type: str = 'instance',
        download_images: bool = False,
    ) -> None
    Docstring:
    Convert COCO annotation (single .json file) to Pascal VOC annotations
        (multiple .xml files).
    
    Args:
        anno_path: path to coco-formated .json annotation file
        output_dir: root output directory
        anno_type: "instance" for rectangle annotation, or "keypoint" for keypoint annotation.
        download_images: if true then download images from their urls.
    
  5. PASCAL VOC => CSV: voc2csv.py

  6. PASCAL VOC => TXT: voc2txt.py

  7. PASCAL VOC dataset information: voc_dataset_information.py

  8. PASCAL VOC Augmentation: voc_augument.py

  9. YOLO Augmentation: yolo_augument.py

  10. Rename file names: rename_files.py

  11. Generate VOC/ImageSets/Main/trainval.txt(train.txt,val.txt,test.txt): voc_gen_trainval_test.py

  12. Cluster anchors used in YOLO series: anchor-cluster.py