Skip to content

Latest commit

 

History

History
554 lines (358 loc) · 30.6 KB

大模型(LLMs)langchain面.md

File metadata and controls

554 lines (358 loc) · 30.6 KB

大模型(LLMs)langchain面

  1. 什么是 LangChain?

    💡 [https://python.langchain.com/docs/get_started/introduction](https://python.langchain.com/docs/get_started/introduction)

    LangChain 是一个基于语言模型的框架,用于构建聊天机器人、生成式问答(GQA)、摘要等功能。它的核心思想是将不同的组件“链”在一起,以创建更高级的语言模型应用。LangChain 的起源可以追溯到 2022 年 10 月,由创造者 Harrison Chase 在那时提交了第一个版本。与 Bitcoin 不同,Bitcoin 是在 2009 年由一位使用化名 Satoshi Nakamoto 的未知人士创建的,它是一种去中心化的加密货币。而 LangChain 是围绕语言模型构建的框架。

  2. LangChain 包含哪些 核心概念?

    1. LangChain 中 Components and Chains 是什么?

      💡 [https://python.langchain.com/docs/modules/chains/](https://python.langchain.com/docs/modules/chains/)

      Components and Chains are key concepts in the LangChain framework.

      Components refer to the individual building blocks or modules that make up the LangChain framework. These components can include language models, data preprocessors, response generators, and other functionalities. Each component is responsible for a specific task or functionality within the language model application.

      Chains, on the other hand, are the connections or links between these components. They define the flow of data and information within the language model application. Chains allow the output of one component to serve as the input for another component, enabling the creation of more advanced language models.

      In summary, Components are the individual modules or functionalities within the LangChain framework, while Chains define the connections and flow of data between these components.

      Here's an example to illustrate the concept of Components and Chains in LangChain:

      from langchain import Component, Chain
      
      # Define components
      preprocessor = Component("Preprocessor")
      language_model = Component("Language Model")
      response_generator = Component("Response Generator")
      
      # Define chains
      chain1 = Chain(preprocessor, language_model)
      chain2 = Chain(language_model, response_generator)
      
      # Execute chains
      input_data = "Hello, how are you?"
      processed_data = chain1.execute(input_data)
      response = chain2.execute(processed_data)
      
      print(response)

      In the above example, we have three components: Preprocessor, Language Model, and Response Generator. We create two chains: chain1 connects the Preprocessor and Language Model, and chain2 connects the Language Model and Response Generator. The input data is passed through chain1 to preprocess it and then passed through chain2 to generate a response.

      This is a simplified example to demonstrate the concept of Components and Chains in LangChain. In a real-world scenario, you would have more complex chains with multiple components and data transformations.

    2. LangChain 中 Prompt Templates and Values 是什么?

      💡 [https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/](https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/)

      Prompt Templates and Values are key concepts in the LangChain framework.

      Prompt Templates refer to predefined structures or formats that guide the generation of prompts for language models. These templates provide a consistent and standardized way to construct prompts by specifying the desired input and output formats. Prompt templates can include placeholders or variables that are later filled with specific values.

      Values, on the other hand, are the specific data or information that is used to fill in the placeholders or variables in prompt templates. These values can be dynamically generated or retrieved from external sources. They provide the necessary context or input for the language model to generate the desired output.

      Here's an example to illustrate the concept of Prompt Templates and Values in LangChain:

      from langchain import PromptTemplate, Value
      
      # Define prompt template
      template = PromptTemplate("What is the capital of {country}?")
      
      # Define values
      country_value = Value("country", "France")
      
      # Generate prompt
      prompt = template.generate_prompt(values=[country_value])
      
      print(prompt)

      In the above example, we have a prompt template that asks for the capital of a country. The template includes a placeholder {country} that will be filled with the actual country value. We define a value object country_value with the name "country" and the value "France". We then generate the prompt by passing the value object to the template's generate_prompt method.

      The generated prompt will be "What is the capital of France?".

      Prompt templates and values allow for flexible and dynamic generation of prompts in the LangChain framework. They enable the customization and adaptation of prompts based on specific requirements or scenarios.

    3. LangChain 中 Example Selectors 是什么?

      💡 [https://python.langchain.com/docs/modules/model_io/prompts/example_selectors/](https://python.langchain.com/docs/modules/model_io/prompts/example_selectors/)

      Example Selectors are a feature in the LangChain framework that allow users to specify and retrieve specific examples or data points from a dataset. These selectors help in customizing the training or inference process by selecting specific examples that meet certain criteria or conditions.

      Example Selectors can be used in various scenarios, such as:

      1. Training data selection: Users can use example selectors to filter and select specific examples from a large training dataset. This can be useful when working with limited computational resources or when focusing on specific subsets of the data.
      2. Inference customization: Example selectors can be used to retrieve specific examples from a dataset during the inference process. This allows users to generate responses or predictions based on specific conditions or criteria.

      Here's an example to illustrate the concept of Example Selectors in LangChain:

      from langchain import ExampleSelector
      
      # Define an example selector
      selector = ExampleSelector(condition="label=='positive'")
      
      # Retrieve examples based on the selector
      selected_examples = selector.select_examples(dataset)
      
      # Use the selected examples for training or inference
      for example in selected_examples:
          # Perform training or inference on the selected example
          ...

      In the above example, we define an example selector with a condition that selects examples with a label equal to "positive". We then use the selector to retrieve the selected examples from a dataset. These selected examples can be used for training or inference purposes.

      Example Selectors provide a flexible way to customize the data used in the LangChain framework. They allow users to focus on specific subsets of the data or apply specific criteria to select examples that meet their requirements.

    4. LangChain 中 Output Parsers 是什么?

      💡 [https://python.langchain.com/docs/modules/model_io/output_parsers/](https://python.langchain.com/docs/modules/model_io/output_parsers/)

      Output Parsers are a feature in the LangChain framework that allow users to automatically detect and parse the output generated by the language model. These parsers are designed to handle different types of output, such as strings, lists, dictionaries, or even Pydantic models.

      Output Parsers provide a convenient way to process and manipulate the output of the language model without the need for manual parsing or conversion. They help in extracting relevant information from the output and enable further processing or analysis.

      Here's an example to illustrate the concept of Output Parsers in LangChain:

      from langchain import llm_prompt, OutputParser
      
      # Define an output parser
      parser = OutputParser()
      
      # Apply the output parser to a function
      @llm_prompt(output_parser=parser)
      def generate_response(input_text):
          # Generate response using the language model
          response = language_model.generate(input_text)
          return response
      
      # Generate a response
      input_text = "Hello, how are you?"
      response = generate_response(input_text)
      
      # Parse the output
      parsed_output = parser.parse_output(response)
      
      # Process the parsed output
      processed_output = process_output(parsed_output)
      
      print(processed_output)

      In the above example, we define an output parser and apply it to the generate_response function using the llm_prompt decorator. The output parser automatically detects the type of the output and provides the parsed output. We can then further process or analyze the parsed output as needed.

      Output Parsers provide a flexible and efficient way to handle the output of the language model in the LangChain framework. They simplify the post-processing of the output and enable seamless integration with other components or systems.

    5. LangChain 中 Indexes and Retrievers 是什么?

      💡 [https://python.langchain.com/docs/modules/data_connection/retrievers/](https://python.langchain.com/docs/modules/data_connection/retrievers/)

      https://python.langchain.com/docs/modules/data_connection/indexing

      Indexes and Retrievers are components in the Langchain framework.

      Indexes are used to store and organize data for efficient retrieval. Langchain supports multiple types of document indexes, such as InMemoryExactNNIndex, HnswDocumentIndex, WeaviateDocumentIndex, ElasticDocIndex, and QdrantDocumentIndex. Each index has its own characteristics and is suited for different use cases. For example, InMemoryExactNNIndex is suitable for small datasets that can be stored in memory, while HnswDocumentIndex is lightweight and suitable for small to medium-sized datasets.

      Retrievers, on the other hand, are used to retrieve relevant documents from the indexes based on a given query. Langchain provides different types of retrievers, such as MetalRetriever and DocArrayRetriever. MetalRetriever is used with the Metal platform for semantic search and retrieval, while DocArrayRetriever is used with the DocArray tool for managing multi-modal data.

      Overall, indexes and retrievers are essential components in Langchain for efficient data storage and retrieval.

    6. LangChain 中 Chat Message History 是什么?

      💡 [https://python.langchain.com/docs/modules/memory/chat_messages/](https://python.langchain.com/docs/modules/memory/chat_messages/)

      Chat Message History 是 Langchain 框架中的一个组件,用于存储和管理聊天消息的历史记录。它可以跟踪和保存用户和AI之间的对话,以便在需要时进行检索和分析。

      Langchain 提供了不同的 Chat Message History 实现,包括 StreamlitChatMessageHistory、CassandraChatMessageHistory 和 MongoDBChatMessageHistory。

      • StreamlitChatMessageHistory:用于在 Streamlit 应用程序中存储和使用聊天消息历史记录。它使用 Streamlit 会话状态来存储消息,并可以与 ConversationBufferMemory 和链或代理一起使用。
      • CassandraChatMessageHistory:使用 Apache Cassandra 数据库存储聊天消息历史记录。Cassandra 是一种高度可扩展和高可用的 NoSQL 数据库,适用于存储大量数据。
      • MongoDBChatMessageHistory:使用 MongoDB 数据库存储聊天消息历史记录。MongoDB 是一种面向文档的 NoSQL 数据库,使用类似 JSON 的文档进行存储。

      您可以根据自己的需求选择适合的 Chat Message History 实现,并将其集成到 Langchain 框架中,以便记录和管理聊天消息的历史记录。

      请注意,Chat Message History 的具体用法和实现细节可以参考 Langchain 的官方文档和示例代码。

    7. LangChain 中 Agents and Toolkits 是什么?

      💡 [https://python.langchain.com/docs/modules/agents/](https://python.langchain.com/docs/modules/agents/)

      https://python.langchain.com/docs/modules/agents/toolkits/

      Agents and Toolkits in LangChain are components that are used to create and manage conversational agents.

      Agents are responsible for determining the next action to take based on the current state of the conversation. They can be created using different approaches, such as OpenAI Function Calling, Plan-and-execute Agent, Baby AGI, and Auto GPT. These approaches provide different levels of customization and functionality for building agents.

      Toolkits, on the other hand, are collections of tools that can be used by agents to perform specific tasks or actions. Tools are functions or methods that take input and produce output. They can be custom-built or pre-defined and cover a wide range of functionalities, such as language processing, data manipulation, and external API integration.

      By combining agents and toolkits, developers can create powerful conversational agents that can understand user inputs, generate appropriate responses, and perform various tasks based on the given context.

      Here is an example of how to create an agent using LangChain:

      from langchain.chat_models import ChatOpenAI
      from langchain.agents import tool
      
      # Load the language model
      llm = ChatOpenAI(temperature=0)
      
      # Define a custom tool
      @tool
      def get_word_length(word: str) -> int:
          """Returns the length of a word."""
          return len(word)
      
      # Create the agent
      agent = {
          "input": lambda x: x["input"],
          "agent_scratchpad": lambda x: format_to_openai_functions(x['intermediate_steps'])
      } | prompt | llm_with_tools | OpenAIFunctionsAgentOutputParser()
      
      # Invoke the agent
      output = agent.invoke({
          "input": "how many letters in the word educa?",
          "intermediate_steps": []
      })
      
      # Print the result
      print(output.return_values["output"])

      This is just a basic example, and there are many more features and functionalities available in LangChain for building and customizing agents and toolkits. You can refer to the LangChain documentation for more details and examples.

  3. 什么是 LangChain Agent?

    💡 [https://python.langchain.com/docs/modules/agents/](https://python.langchain.com/docs/modules/agents/)

    LangChain Agent 是 LangChain 框架中的一个组件,用于创建和管理对话代理。代理是根据当前对话状态确定下一步操作的组件。LangChain 提供了多种创建代理的方法,包括 OpenAI Function Calling、Plan-and-execute Agent、Baby AGI 和 Auto GPT 等。这些方法提供了不同级别的自定义和功能,用于构建代理。

    代理可以使用工具包执行特定的任务或操作。工具包是代理使用的一组工具,用于执行特定的功能,如语言处理、数据操作和外部 API 集成。工具可以是自定义构建的,也可以是预定义的,涵盖了广泛的功能。

    通过结合代理和工具包,开发人员可以创建强大的对话代理,能够理解用户输入,生成适当的回复,并根据给定的上下文执行各种任务。

    以下是使用 LangChain 创建代理的示例代码:

    from langchain.chat_models import ChatOpenAI
    from langchain.agents import tool
    
    # 加载语言模型
    llm = ChatOpenAI(temperature=0)
    
    # 定义自定义工具
    @tool
    def get_word_length(word: str) -> int:
        """返回单词的长度。"""
        return len(word)
    
    # 创建代理
    agent = {
        "input": lambda x: x["input"],
        "agent_scratchpad": lambda x: format_to_openai_functions(x['intermediate_steps'])
    } | prompt | llm_with_tools | OpenAIFunctionsAgentOutputParser()
    
    # 调用代理
    output = agent.invoke({
        "input": "单词 educa 中有多少个字母?",
        "intermediate_steps": []
    })
    
    # 打印结果
    print(output.return_values["output"])

    这只是一个基本示例,LangChain 中还有更多功能和功能可用于构建和自定义代理和工具包。您可以参考 LangChain 文档以获取更多详细信息和示例。

  4. 如何使用 LangChain ?

    💡 [https://python.langchain.com/docs/get_started/quickstart](https://python.langchain.com/docs/get_started/quickstart)

    To use LangChain, you first need to sign up for an API key at platform.langchain.com. Once you have your API key, you can install the Python library and write a simple Python script to call the LangChain API. Here is some sample code to get started:

    import langchain
    
    api_key = "YOUR_API_KEY"
    
    langchain.set_key(api_key)
    
    response = langchain.ask("What is the capital of France?")
    
    print(response.response)
    

    This code will send the question "What is the capital of France?" to the LangChain API and print the response. You can customize the request by providing parameters like max_tokens, temperature, etc. The LangChain Python library documentation has more details on the available options.

  5. LangChain 支持哪些功能?

    💡

    LangChain支持以下功能:

    1. 编写帖子的短标题:使用**write_me_short_post函数可以生成关于特定主题、平台和受众的短标题。该函数的参数包括topic(主题)、platform(平台,默认为Twitter)和audience**(受众,默认为开发人员)。生成的标题应该在15个单词以内。
    2. 模拟对话:使用**simulate_conversation**函数可以模拟对话,包括系统消息、用户消息和助手消息。对话可以根据角色(如助手、用户、系统)进行交互,并可以包含历史记录。这对于训练聊天模型非常有用。
    3. 可选部分:可以在提示中定义可选部分,只有在所有参数都不为空时才会渲染该部分。这可以通过在提示中使用**{? ... ?}**语法来实现。
    4. 输出解析器:**llm_prompt**装饰器可以自动检测输出类型,并提供相应的解析器。支持的输出类型包括字符串、列表、字典和Pydantic模型。

    以上是LangChain支持的一些功能。您可以根据具体的需求使用这些功能来创建生产就绪的聊天应用程序。

    💡

    LangChain支持以下功能:

    • 编写自定义的LangChain提示和链式代码的语法糖
    • 使用IDE内置的支持进行提示、类型检查和弹出文档,以快速查看函数的提示和参数
    • 利用LangChain生态系统的全部功能
    • 添加对可选参数的支持
    • 通过将参数绑定到一个类来轻松共享参数
    • 支持传递内存和回调函数
    • 简化的流式处理
    • 定义聊天消息提示
    • 可选部分
    • 输出解析器
    • 支持更复杂的数据结构
  6. 什么是 LangChain model?

    💡

    LangChain model 是一个基于语言模型的框架,用于构建聊天机器人、生成式问答(GQA)、摘要等功能。LangChain 的核心思想是可以将不同的组件“链”在一起,以创建更高级的语言模型应用。

    💡 LangChain model是一种基于大型语言模型(LLM)的模型。它是LangChain框架的核心组件之一,用于构建基于语言模型的应用程序。LangChain模型可以用于聊天机器人、生成式问答、摘要等多种应用。它提供了一种标准的接口,使开发人员能够使用LLM来处理自然语言处理任务。LangChain模型的目标是简化开发过程,使开发人员能够更轻松地构建强大的语言模型应用程序。
  7. LangChain 包含哪些特点?

    💡

    LangChain 包含以下特点:

    • 编写自定义的LangChain提示和链式代码的语法糖
    • 使用IDE内置的支持进行提示、类型检查和弹出文档,以快速查看函数的提示和参数
    • 利用LangChain生态系统的全部功能
    • 添加对可选参数的支持
    • 通过将参数绑定到一个类来轻松共享参数
    • 支持传递内存和回调函数
    • 简化的流式处理
    • 定义聊天消息提示
    • 可选部分
    • 输出解析器
    • 支持更复杂的数据结构
  8. LangChain 如何使用?

    1. LangChain 如何调用 LLMs 生成回复?

      💡

      要调用LLMs生成回复,您可以使用LangChain框架提供的LLMChain类。LLMChain类是LangChain的一个组件,用于与语言模型进行交互并生成回复。以下是一个示例代码片段,展示了如何使用LLMChain类调用LLMs生成回复:

      from langchain.llms import OpenAI
      from langchain.chains import LLMChain
      
      llm = OpenAI(temperature=0.9)  # 创建LLM实例
      prompt = "用户的问题"  # 设置用户的问题
      
      # 创建LLMChain实例
      chain = LLMChain(llm=llm, prompt=prompt)
      
      # 调用LLMs生成回复
      response = chain.generate()
      
      print(response)  # 打印生成的回复

      在上面的代码中,我们首先创建了一个LLM实例,然后设置了用户的问题作为LLMChain的prompt。接下来,我们调用LLMChain的generate方法来生成回复。最后,我们打印生成的回复。

      请注意,您可以根据需要自定义LLM的参数,例如温度(temperature)、最大令牌数(max_tokens)等。LangChain文档中有关于LLMChain类和LLM参数的更多详细信息。

    2. LangChain 如何修改 提示模板?

      💡

      要修改LangChain的提示模板,您可以使用LangChain框架提供的**ChatPromptTemplate类。ChatPromptTemplate类允许您创建自定义的聊天消息提示,并根据需要进行修改。以下是一个示例代码片段,展示了如何使用ChatPromptTemplate**类修改提示模板:

      from langchain.prompts import ChatPromptTemplate
      
      # 创建一个空的ChatPromptTemplate实例
      template = ChatPromptTemplate()
      
      # 添加聊天消息提示
      template.add_message("system", "You are a helpful AI bot.")
      template.add_message("human", "Hello, how are you doing?")
      template.add_message("ai", "I'm doing well, thanks!")
      template.add_message("human", "What is your name?")
      
      # 修改提示模板
      template.set_message_content(0, "You are a helpful AI assistant.")
      template.set_message_content(3, "What is your name? Please tell me.")
      
      # 格式化聊天消息
      messages = template.format_messages()
      
      print(messages)

      在上面的代码中,我们首先创建了一个空的**ChatPromptTemplate实例。然后,我们使用add_message方法添加了聊天消息提示。接下来,我们使用set_message_content方法修改了第一个和最后一个聊天消息的内容。最后,我们使用format_messages**方法格式化聊天消息,并打印出来。

      请注意,您可以根据需要添加、删除和修改聊天消息提示。**ChatPromptTemplate**类提供了多种方法来操作提示模板。更多详细信息和示例代码可以在LangChain文档中找到。

    3. LangChain 如何链接多个组件处理一个特定的下游任务?

      💡

      要链接多个组件处理一个特定的下游任务,您可以使用LangChain框架提供的**Chain类。Chain类允许您将多个组件连接在一起,以便按顺序处理任务。以下是一个示例代码片段,展示了如何使用Chain**类链接多个组件处理下游任务:

      from langchain.chains import Chain
      from langchain.components import Component1, Component2, Component3
      
      # 创建组件实例
      component1 = Component1()
      component2 = Component2()
      component3 = Component3()
      
      # 创建Chain实例并添加组件
      chain = Chain()
      chain.add_component(component1)
      chain.add_component(component2)
      chain.add_component(component3)
      
      # 处理下游任务
      output = chain.process_downstream_task()
      
      print(output)

      在上面的代码中,我们首先创建了多个组件的实例,例如**Component1Component2Component3。然后,我们创建了一个Chain实例,并使用add_component方法将这些组件添加到链中。最后,我们调用process_downstream_task**方法来处理下游任务,并打印输出结果。

      请注意,您可以根据需要添加、删除和修改组件。**Chain**类提供了多种方法来操作链。更多详细信息和示例代码可以在LangChain文档中找到。

    4. LangChain 如何Embedding & vector store?

      💡

      要在LangChain中进行嵌入和向量存储,您可以使用LangChain框架提供的**EmbeddingVectorStore类。Embedding类用于将文本嵌入到向量空间中,而VectorStore**类用于存储和检索嵌入向量。以下是一个示例代码片段,展示了如何在LangChain中进行嵌入和向量存储:

      from langchain.embeddings import Embedding
      from langchain.vectorstore import VectorStore
      
      # 创建Embedding实例
      embedding = Embedding()
      
      # 将文本嵌入到向量空间中
      embedding.embed("Hello, world!")
      
      # 创建VectorStore实例
      vector_store = VectorStore()
      
      # 存储嵌入向量
      vector_store.store("hello", embedding.get_embedding())
      
      # 检索嵌入向量
      vector = vector_store.retrieve("hello")
      
      print(vector)

      在上面的代码中,我们首先创建了一个**Embedding实例,并使用embed方法将文本嵌入到向量空间中。然后,我们创建了一个VectorStore实例,并使用store方法将嵌入向量存储到向量存储中。最后,我们使用retrieve**方法检索嵌入向量,并打印出来。

      请注意,您可以根据需要添加、删除和修改嵌入向量。**Embedding类和VectorStore**类提供了多种方法来操作嵌入和向量存储。更多详细信息和示例代码可以在LangChain文档中找到。

  9. LangChain 存在哪些问题及方法方案?

    1. LangChain 低效的令牌使用问题

      💡

      LangChain的token使用是高效的。LangChain使用了一种称为"token-based"的方法来处理文本输入和输出。这种方法将文本分解为小的单元,称为"tokens",并对它们进行处理。相比于传统的字符或词语级别的处理,使用tokens可以更高效地处理文本。

      LangChain还提供了一些参数,如**max_tokenstemperature**,可以用来控制生成回复的长度和多样性。通过调整这些参数,开发人员可以根据自己的需求来平衡生成回复的效率和质量。

      总的来说,LangChain的token使用是高效的,并且开发人员可以通过调整参数来控制生成回复的效果。

    2. LangChain 文档的问题

    3. LangChain 太多概念容易混淆,过多的“辅助”函数问题

    4. LangChain 行为不一致并且隐藏细节问题

    5. LangChain 缺乏标准的可互操作数据类型问题

      💡 LangChain提供了一种标准的接口,使开发人员能够使用大型语言模型(LLM)处理自然语言处理任务。虽然LangChain支持更复杂的数据结构,但它目前缺乏标准的可互操作数据类型。这意味着LangChain在处理数据时可能需要进行一些额外的处理和转换。开发人员可以根据自己的需求使用LangChain提供的功能和工具来处理和操作数据。
  10. LangChain 替代方案?

    💡 LangChain是一个独特的框架,目前没有直接的替代方案。它提供了一种简化开发过程的方式,使开发人员能够更轻松地构建基于语言模型的应用程序。LangChain的特点包括编写自定义的LangChain提示和链式代码的语法糖、使用IDE内置的支持进行提示和类型检查、支持可选参数和共享参数等。虽然可能有其他类似的框架可用,但LangChain在其特定领域内提供了独特的功能和优势。