diff --git a/pandas/tests/frame/test_analytics.py b/pandas/tests/frame/test_analytics.py index 456af34e74956..2e690ebbfa121 100644 --- a/pandas/tests/frame/test_analytics.py +++ b/pandas/tests/frame/test_analytics.py @@ -231,9 +231,9 @@ def assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, getattr(bool_frame_with_na, opname)(axis=1, bool_only=False) -class TestDataFrameAnalytics(): +class TestDataFrameAnalytics(object): - # ---------------------------------------------------------------------= + # --------------------------------------------------------------------- # Correlation and covariance @td.skip_if_no_scipy @@ -502,6 +502,9 @@ def test_corrwith_kendall(self): expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) + # --------------------------------------------------------------------- + # Describe + def test_bool_describe_in_mixed_frame(self): df = DataFrame({ 'string_data': ['a', 'b', 'c', 'd', 'e'], @@ -693,82 +696,113 @@ def test_describe_tz_values(self, tz_naive_fixture): result = df.describe(include='all') tm.assert_frame_equal(result, expected) - def test_reduce_mixed_frame(self): - # GH 6806 - df = DataFrame({ - 'bool_data': [True, True, False, False, False], - 'int_data': [10, 20, 30, 40, 50], - 'string_data': ['a', 'b', 'c', 'd', 'e'], - }) - df.reindex(columns=['bool_data', 'int_data', 'string_data']) - test = df.sum(axis=0) - tm.assert_numpy_array_equal(test.values, - np.array([2, 150, 'abcde'], dtype=object)) - tm.assert_series_equal(test, df.T.sum(axis=1)) + # --------------------------------------------------------------------- + # Reductions - def test_count(self, float_frame_with_na, float_frame, float_string_frame): - f = lambda s: notna(s).sum() - assert_stat_op_calc('count', f, float_frame_with_na, has_skipna=False, - check_dtype=False, check_dates=True) + def test_stat_op_api(self, float_frame, float_string_frame): assert_stat_op_api('count', float_frame, float_string_frame, has_numeric_only=True) + assert_stat_op_api('sum', float_frame, float_string_frame, + has_numeric_only=True) - # corner case - frame = DataFrame() - ct1 = frame.count(1) - assert isinstance(ct1, Series) + assert_stat_op_api('nunique', float_frame, float_string_frame) + assert_stat_op_api('mean', float_frame, float_string_frame) + assert_stat_op_api('product', float_frame, float_string_frame) + assert_stat_op_api('median', float_frame, float_string_frame) + assert_stat_op_api('min', float_frame, float_string_frame) + assert_stat_op_api('max', float_frame, float_string_frame) + assert_stat_op_api('mad', float_frame, float_string_frame) + assert_stat_op_api('var', float_frame, float_string_frame) + assert_stat_op_api('std', float_frame, float_string_frame) + assert_stat_op_api('sem', float_frame, float_string_frame) + assert_stat_op_api('median', float_frame, float_string_frame) - ct2 = frame.count(0) - assert isinstance(ct2, Series) + try: + from scipy.stats import skew, kurtosis # noqa:F401 + assert_stat_op_api('skew', float_frame, float_string_frame) + assert_stat_op_api('kurt', float_frame, float_string_frame) + except ImportError: + pass - # GH 423 - df = DataFrame(index=lrange(10)) - result = df.count(1) - expected = Series(0, index=df.index) - tm.assert_series_equal(result, expected) + def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame): - df = DataFrame(columns=lrange(10)) - result = df.count(0) - expected = Series(0, index=df.columns) - tm.assert_series_equal(result, expected) + def count(s): + return notna(s).sum() - df = DataFrame() - result = df.count() - expected = Series(0, index=[]) - tm.assert_series_equal(result, expected) + def nunique(s): + return len(algorithms.unique1d(s.dropna())) - def test_nunique(self, float_frame_with_na, float_frame, - float_string_frame): - f = lambda s: len(algorithms.unique1d(s.dropna())) - assert_stat_op_calc('nunique', f, float_frame_with_na, + def mad(x): + return np.abs(x - x.mean()).mean() + + def var(x): + return np.var(x, ddof=1) + + def std(x): + return np.std(x, ddof=1) + + def sem(x): + return np.std(x, ddof=1) / np.sqrt(len(x)) + + def skewness(x): + from scipy.stats import skew # noqa:F811 + if len(x) < 3: + return np.nan + return skew(x, bias=False) + + def kurt(x): + from scipy.stats import kurtosis # noqa:F811 + if len(x) < 4: + return np.nan + return kurtosis(x, bias=False) + + assert_stat_op_calc('nunique', nunique, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) - assert_stat_op_api('nunique', float_frame, float_string_frame) - df = DataFrame({'A': [1, 1, 1], - 'B': [1, 2, 3], - 'C': [1, np.nan, 3]}) - tm.assert_series_equal(df.nunique(), Series({'A': 1, 'B': 3, 'C': 2})) - tm.assert_series_equal(df.nunique(dropna=False), - Series({'A': 1, 'B': 3, 'C': 3})) - tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2})) - tm.assert_series_equal(df.nunique(axis=1, dropna=False), - Series({0: 1, 1: 3, 2: 2})) - - def test_sum(self, float_frame_with_na, mixed_float_frame, - float_frame, float_string_frame): - assert_stat_op_api('sum', float_frame, float_string_frame, - has_numeric_only=True) - assert_stat_op_calc('sum', np.sum, float_frame_with_na, - skipna_alternative=np.nansum) # mixed types (with upcasting happening) assert_stat_op_calc('sum', np.sum, mixed_float_frame.astype('float32'), check_dtype=False, check_less_precise=True) + assert_stat_op_calc('sum', np.sum, float_frame_with_na, + skipna_alternative=np.nansum) + assert_stat_op_calc('mean', np.mean, float_frame_with_na, + check_dates=True) + assert_stat_op_calc('product', np.prod, float_frame_with_na) + + assert_stat_op_calc('mad', mad, float_frame_with_na) + assert_stat_op_calc('var', var, float_frame_with_na) + assert_stat_op_calc('std', std, float_frame_with_na) + assert_stat_op_calc('sem', sem, float_frame_with_na) + + assert_stat_op_calc('count', count, float_frame_with_na, + has_skipna=False, check_dtype=False, + check_dates=True) + + try: + from scipy import skew, kurtosis # noqa:F401 + assert_stat_op_calc('skew', skewness, float_frame_with_na) + assert_stat_op_calc('kurt', kurt, float_frame_with_na) + except ImportError: + pass + + # TODO: Ensure warning isn't emitted in the first place + @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") + def test_median(self, float_frame_with_na, int_frame): + def wrapper(x): + if isna(x).any(): + return np.nan + return np.median(x) + + assert_stat_op_calc('median', wrapper, float_frame_with_na, + check_dates=True) + assert_stat_op_calc('median', wrapper, int_frame, check_dtype=False, + check_dates=True) + @pytest.mark.parametrize('method', ['sum', 'mean', 'prod', 'var', 'std', 'skew', 'min', 'max']) def test_stat_operators_attempt_obj_array(self, method): - # GH 676 + # GH#676 data = { 'a': [-0.00049987540199591344, -0.0016467257772919831, 0.00067695870775883013], @@ -789,10 +823,44 @@ def test_stat_operators_attempt_obj_array(self, method): if method in ['sum', 'prod']: tm.assert_series_equal(result, expected) - def test_mean(self, float_frame_with_na, float_frame, float_string_frame): - assert_stat_op_calc('mean', np.mean, float_frame_with_na, - check_dates=True) - assert_stat_op_api('mean', float_frame, float_string_frame) + @pytest.mark.parametrize('op', ['mean', 'std', 'var', + 'skew', 'kurt', 'sem']) + def test_mixed_ops(self, op): + # GH#16116 + df = DataFrame({'int': [1, 2, 3, 4], + 'float': [1., 2., 3., 4.], + 'str': ['a', 'b', 'c', 'd']}) + + result = getattr(df, op)() + assert len(result) == 2 + + with pd.option_context('use_bottleneck', False): + result = getattr(df, op)() + assert len(result) == 2 + + def test_reduce_mixed_frame(self): + # GH 6806 + df = DataFrame({ + 'bool_data': [True, True, False, False, False], + 'int_data': [10, 20, 30, 40, 50], + 'string_data': ['a', 'b', 'c', 'd', 'e'], + }) + df.reindex(columns=['bool_data', 'int_data', 'string_data']) + test = df.sum(axis=0) + tm.assert_numpy_array_equal(test.values, + np.array([2, 150, 'abcde'], dtype=object)) + tm.assert_series_equal(test, df.T.sum(axis=1)) + + def test_nunique(self): + df = DataFrame({'A': [1, 1, 1], + 'B': [1, 2, 3], + 'C': [1, np.nan, 3]}) + tm.assert_series_equal(df.nunique(), Series({'A': 1, 'B': 3, 'C': 2})) + tm.assert_series_equal(df.nunique(dropna=False), + Series({'A': 1, 'B': 3, 'C': 3})) + tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2})) + tm.assert_series_equal(df.nunique(axis=1, dropna=False), + Series({0: 1, 1: 3, 2: 2})) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_mixed_datetime_numeric(self, tz): @@ -813,103 +881,7 @@ def test_mean_excludeds_datetimes(self, tz): expected = pd.Series() tm.assert_series_equal(result, expected) - def test_product(self, float_frame_with_na, float_frame, - float_string_frame): - assert_stat_op_calc('product', np.prod, float_frame_with_na) - assert_stat_op_api('product', float_frame, float_string_frame) - - # TODO: Ensure warning isn't emitted in the first place - @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") - def test_median(self, float_frame_with_na, float_frame, - float_string_frame): - def wrapper(x): - if isna(x).any(): - return np.nan - return np.median(x) - - assert_stat_op_calc('median', wrapper, float_frame_with_na, - check_dates=True) - assert_stat_op_api('median', float_frame, float_string_frame) - - def test_min(self, float_frame_with_na, int_frame, - float_frame, float_string_frame): - with warnings.catch_warnings(record=True): - warnings.simplefilter("ignore", RuntimeWarning) - assert_stat_op_calc('min', np.min, float_frame_with_na, - check_dates=True) - assert_stat_op_calc('min', np.min, int_frame) - assert_stat_op_api('min', float_frame, float_string_frame) - - def test_cummin(self, datetime_frame): - datetime_frame.loc[5:10, 0] = np.nan - datetime_frame.loc[10:15, 1] = np.nan - datetime_frame.loc[15:, 2] = np.nan - - # axis = 0 - cummin = datetime_frame.cummin() - expected = datetime_frame.apply(Series.cummin) - tm.assert_frame_equal(cummin, expected) - - # axis = 1 - cummin = datetime_frame.cummin(axis=1) - expected = datetime_frame.apply(Series.cummin, axis=1) - tm.assert_frame_equal(cummin, expected) - - # it works - df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) - result = df.cummin() # noqa - - # fix issue - cummin_xs = datetime_frame.cummin(axis=1) - assert np.shape(cummin_xs) == np.shape(datetime_frame) - - def test_cummax(self, datetime_frame): - datetime_frame.loc[5:10, 0] = np.nan - datetime_frame.loc[10:15, 1] = np.nan - datetime_frame.loc[15:, 2] = np.nan - - # axis = 0 - cummax = datetime_frame.cummax() - expected = datetime_frame.apply(Series.cummax) - tm.assert_frame_equal(cummax, expected) - - # axis = 1 - cummax = datetime_frame.cummax(axis=1) - expected = datetime_frame.apply(Series.cummax, axis=1) - tm.assert_frame_equal(cummax, expected) - - # it works - df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) - result = df.cummax() # noqa - - # fix issue - cummax_xs = datetime_frame.cummax(axis=1) - assert np.shape(cummax_xs) == np.shape(datetime_frame) - - def test_max(self, float_frame_with_na, int_frame, - float_frame, float_string_frame): - with warnings.catch_warnings(record=True): - warnings.simplefilter("ignore", RuntimeWarning) - assert_stat_op_calc('max', np.max, float_frame_with_na, - check_dates=True) - assert_stat_op_calc('max', np.max, int_frame) - assert_stat_op_api('max', float_frame, float_string_frame) - - def test_mad(self, float_frame_with_na, float_frame, float_string_frame): - f = lambda x: np.abs(x - x.mean()).mean() - assert_stat_op_calc('mad', f, float_frame_with_na) - assert_stat_op_api('mad', float_frame, float_string_frame) - - def test_var_std(self, float_frame_with_na, datetime_frame, float_frame, - float_string_frame): - alt = lambda x: np.var(x, ddof=1) - assert_stat_op_calc('var', alt, float_frame_with_na) - assert_stat_op_api('var', float_frame, float_string_frame) - - alt = lambda x: np.std(x, ddof=1) - assert_stat_op_calc('std', alt, float_frame_with_na) - assert_stat_op_api('std', float_frame, float_string_frame) - + def test_var_std(self, datetime_frame): result = datetime_frame.std(ddof=4) expected = datetime_frame.apply(lambda x: x.std(ddof=4)) tm.assert_almost_equal(result, expected) @@ -952,79 +924,7 @@ def test_numeric_only_flag(self, meth): pytest.raises(TypeError, lambda: getattr(df2, meth)( axis=1, numeric_only=False)) - @pytest.mark.parametrize('op', ['mean', 'std', 'var', - 'skew', 'kurt', 'sem']) - def test_mixed_ops(self, op): - # GH 16116 - df = DataFrame({'int': [1, 2, 3, 4], - 'float': [1., 2., 3., 4.], - 'str': ['a', 'b', 'c', 'd']}) - - result = getattr(df, op)() - assert len(result) == 2 - - with pd.option_context('use_bottleneck', False): - result = getattr(df, op)() - assert len(result) == 2 - - def test_cumsum(self, datetime_frame): - datetime_frame.loc[5:10, 0] = np.nan - datetime_frame.loc[10:15, 1] = np.nan - datetime_frame.loc[15:, 2] = np.nan - - # axis = 0 - cumsum = datetime_frame.cumsum() - expected = datetime_frame.apply(Series.cumsum) - tm.assert_frame_equal(cumsum, expected) - - # axis = 1 - cumsum = datetime_frame.cumsum(axis=1) - expected = datetime_frame.apply(Series.cumsum, axis=1) - tm.assert_frame_equal(cumsum, expected) - - # works - df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) - result = df.cumsum() # noqa - - # fix issue - cumsum_xs = datetime_frame.cumsum(axis=1) - assert np.shape(cumsum_xs) == np.shape(datetime_frame) - - def test_cumprod(self, datetime_frame): - datetime_frame.loc[5:10, 0] = np.nan - datetime_frame.loc[10:15, 1] = np.nan - datetime_frame.loc[15:, 2] = np.nan - - # axis = 0 - cumprod = datetime_frame.cumprod() - expected = datetime_frame.apply(Series.cumprod) - tm.assert_frame_equal(cumprod, expected) - - # axis = 1 - cumprod = datetime_frame.cumprod(axis=1) - expected = datetime_frame.apply(Series.cumprod, axis=1) - tm.assert_frame_equal(cumprod, expected) - - # fix issue - cumprod_xs = datetime_frame.cumprod(axis=1) - assert np.shape(cumprod_xs) == np.shape(datetime_frame) - - # ints - df = datetime_frame.fillna(0).astype(int) - df.cumprod(0) - df.cumprod(1) - - # ints32 - df = datetime_frame.fillna(0).astype(np.int32) - df.cumprod(0) - df.cumprod(1) - - def test_sem(self, float_frame_with_na, datetime_frame, - float_frame, float_string_frame): - alt = lambda x: np.std(x, ddof=1) / np.sqrt(len(x)) - assert_stat_op_calc('sem', alt, float_frame_with_na) - assert_stat_op_api('sem', float_frame, float_string_frame) - + def test_sem(self, datetime_frame): result = datetime_frame.sem(ddof=4) expected = datetime_frame.apply( lambda x: x.std(ddof=4) / np.sqrt(len(x))) @@ -1039,29 +939,7 @@ def test_sem(self, float_frame_with_na, datetime_frame, assert not (result < 0).any() @td.skip_if_no_scipy - def test_skew(self, float_frame_with_na, float_frame, float_string_frame): - from scipy.stats import skew - - def alt(x): - if len(x) < 3: - return np.nan - return skew(x, bias=False) - - assert_stat_op_calc('skew', alt, float_frame_with_na) - assert_stat_op_api('skew', float_frame, float_string_frame) - - @td.skip_if_no_scipy - def test_kurt(self, float_frame_with_na, float_frame, float_string_frame): - from scipy.stats import kurtosis - - def alt(x): - if len(x) < 4: - return np.nan - return kurtosis(x, bias=False) - - assert_stat_op_calc('kurt', alt, float_frame_with_na) - assert_stat_op_api('kurt', float_frame, float_string_frame) - + def test_kurt(self): index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], @@ -1323,20 +1201,146 @@ def test_stats_mixed_type(self, float_string_frame): float_string_frame.mean(1) float_string_frame.skew(1) - # TODO: Ensure warning isn't emitted in the first place - @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") - def test_median_corner(self, int_frame, float_frame, float_string_frame): - def wrapper(x): - if isna(x).any(): - return np.nan - return np.median(x) + def test_sum_bools(self): + df = DataFrame(index=lrange(1), columns=lrange(10)) + bools = isna(df) + assert bools.sum(axis=1)[0] == 10 - assert_stat_op_calc('median', wrapper, int_frame, check_dtype=False, - check_dates=True) - assert_stat_op_api('median', float_frame, float_string_frame) + # --------------------------------------------------------------------- + # Cumulative Reductions - cumsum, cummax, ... + + def test_cumsum_corner(self): + dm = DataFrame(np.arange(20).reshape(4, 5), + index=lrange(4), columns=lrange(5)) + # ?(wesm) + result = dm.cumsum() # noqa + + def test_cumsum(self, datetime_frame): + datetime_frame.loc[5:10, 0] = np.nan + datetime_frame.loc[10:15, 1] = np.nan + datetime_frame.loc[15:, 2] = np.nan + + # axis = 0 + cumsum = datetime_frame.cumsum() + expected = datetime_frame.apply(Series.cumsum) + tm.assert_frame_equal(cumsum, expected) + + # axis = 1 + cumsum = datetime_frame.cumsum(axis=1) + expected = datetime_frame.apply(Series.cumsum, axis=1) + tm.assert_frame_equal(cumsum, expected) + + # works + df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) + result = df.cumsum() # noqa + + # fix issue + cumsum_xs = datetime_frame.cumsum(axis=1) + assert np.shape(cumsum_xs) == np.shape(datetime_frame) + + def test_cumprod(self, datetime_frame): + datetime_frame.loc[5:10, 0] = np.nan + datetime_frame.loc[10:15, 1] = np.nan + datetime_frame.loc[15:, 2] = np.nan + + # axis = 0 + cumprod = datetime_frame.cumprod() + expected = datetime_frame.apply(Series.cumprod) + tm.assert_frame_equal(cumprod, expected) + + # axis = 1 + cumprod = datetime_frame.cumprod(axis=1) + expected = datetime_frame.apply(Series.cumprod, axis=1) + tm.assert_frame_equal(cumprod, expected) + + # fix issue + cumprod_xs = datetime_frame.cumprod(axis=1) + assert np.shape(cumprod_xs) == np.shape(datetime_frame) + # ints + df = datetime_frame.fillna(0).astype(int) + df.cumprod(0) + df.cumprod(1) + + # ints32 + df = datetime_frame.fillna(0).astype(np.int32) + df.cumprod(0) + df.cumprod(1) + + def test_cummin(self, datetime_frame): + datetime_frame.loc[5:10, 0] = np.nan + datetime_frame.loc[10:15, 1] = np.nan + datetime_frame.loc[15:, 2] = np.nan + + # axis = 0 + cummin = datetime_frame.cummin() + expected = datetime_frame.apply(Series.cummin) + tm.assert_frame_equal(cummin, expected) + + # axis = 1 + cummin = datetime_frame.cummin(axis=1) + expected = datetime_frame.apply(Series.cummin, axis=1) + tm.assert_frame_equal(cummin, expected) + + # it works + df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) + result = df.cummin() # noqa + + # fix issue + cummin_xs = datetime_frame.cummin(axis=1) + assert np.shape(cummin_xs) == np.shape(datetime_frame) + + def test_cummax(self, datetime_frame): + datetime_frame.loc[5:10, 0] = np.nan + datetime_frame.loc[10:15, 1] = np.nan + datetime_frame.loc[15:, 2] = np.nan + + # axis = 0 + cummax = datetime_frame.cummax() + expected = datetime_frame.apply(Series.cummax) + tm.assert_frame_equal(cummax, expected) + + # axis = 1 + cummax = datetime_frame.cummax(axis=1) + expected = datetime_frame.apply(Series.cummax, axis=1) + tm.assert_frame_equal(cummax, expected) + + # it works + df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) + result = df.cummax() # noqa + + # fix issue + cummax_xs = datetime_frame.cummax(axis=1) + assert np.shape(cummax_xs) == np.shape(datetime_frame) + + # --------------------------------------------------------------------- # Miscellanea + def test_count(self): + # corner case + frame = DataFrame() + ct1 = frame.count(1) + assert isinstance(ct1, Series) + + ct2 = frame.count(0) + assert isinstance(ct2, Series) + + # GH#423 + df = DataFrame(index=lrange(10)) + result = df.count(1) + expected = Series(0, index=df.index) + tm.assert_series_equal(result, expected) + + df = DataFrame(columns=lrange(10)) + result = df.count(0) + expected = Series(0, index=df.columns) + tm.assert_series_equal(result, expected) + + df = DataFrame() + result = df.count() + expected = Series(0, index=[]) + tm.assert_series_equal(result, expected) + def test_count_objects(self, float_string_frame): dm = DataFrame(float_string_frame._series) df = DataFrame(float_string_frame._series) @@ -1344,17 +1348,23 @@ def test_count_objects(self, float_string_frame): tm.assert_series_equal(dm.count(), df.count()) tm.assert_series_equal(dm.count(1), df.count(1)) - def test_cumsum_corner(self): - dm = DataFrame(np.arange(20).reshape(4, 5), - index=lrange(4), columns=lrange(5)) - # ?(wesm) - result = dm.cumsum() # noqa + def test_pct_change(self): + # GH#11150 + pnl = DataFrame([np.arange(0, 40, 10), + np.arange(0, 40, 10), + np.arange(0, 40, 10)]).astype(np.float64) + pnl.iat[1, 0] = np.nan + pnl.iat[1, 1] = np.nan + pnl.iat[2, 3] = 60 - def test_sum_bools(self): - df = DataFrame(index=lrange(1), columns=lrange(10)) - bools = isna(df) - assert bools.sum(axis=1)[0] == 10 + for axis in range(2): + expected = pnl.ffill(axis=axis) / pnl.ffill(axis=axis).shift( + axis=axis) - 1 + result = pnl.pct_change(axis=axis, fill_method='pad') + tm.assert_frame_equal(result, expected) + + # ---------------------------------------------------------------------- # Index of max / min def test_idxmin(self, float_frame, int_frame): @@ -1700,7 +1710,9 @@ def test_isin_empty_datetimelike(self): result = df1_td.isin(df3) tm.assert_frame_equal(result, expected) + # --------------------------------------------------------------------- # Rounding + def test_round(self): # GH 2665 @@ -1888,22 +1900,9 @@ def test_round_nonunique_categorical(self): tm.assert_frame_equal(result, expected) - def test_pct_change(self): - # GH 11150 - pnl = DataFrame([np.arange(0, 40, 10), np.arange(0, 40, 10), np.arange( - 0, 40, 10)]).astype(np.float64) - pnl.iat[1, 0] = np.nan - pnl.iat[1, 1] = np.nan - pnl.iat[2, 3] = 60 - - for axis in range(2): - expected = pnl.ffill(axis=axis) / pnl.ffill(axis=axis).shift( - axis=axis) - 1 - result = pnl.pct_change(axis=axis, fill_method='pad') - - tm.assert_frame_equal(result, expected) - + # --------------------------------------------------------------------- # Clip + def test_clip(self, float_frame): median = float_frame.median().median() original = float_frame.copy() @@ -2076,7 +2075,9 @@ def test_clip_with_na_args(self, float_frame): 'col_2': [np.nan, np.nan, np.nan]}) tm.assert_frame_equal(result, expected) + # --------------------------------------------------------------------- # Matrix-like + def test_dot(self): a = DataFrame(np.random.randn(3, 4), index=['a', 'b', 'c'], columns=['p', 'q', 'r', 's'])