diff --git a/pandas/tests/series/methods/test_drop_duplicates.py b/pandas/tests/series/methods/test_drop_duplicates.py index 31ef8ff896bccd..493b3e900c2f7f 100644 --- a/pandas/tests/series/methods/test_drop_duplicates.py +++ b/pandas/tests/series/methods/test_drop_duplicates.py @@ -75,10 +75,22 @@ class TestSeriesDropDuplicates: params=["int_", "uint", "float64", "str_", "timedelta64[h]", "datetime64[D]"] ) def dtype(self, request): + """ + Fixture that provides different data types for testing. + The parameterized fixture returns various numpy data types including + integer, unsigned integer, float, string, timedelta, and datetime. + """ return request.param @pytest.fixture def cat_series_unused_category(self, dtype, ordered): + """ + Fixture that creates a Categorical Series with some unused categories. + This fixture creates a Categorical Series based on the given dtype and + ordered parameters. The input series contains some categories that are + not used in the actual data, allowing the testing of categorical + behavior with unused categories. + """ # Test case 1 cat_array = np.array([1, 2, 3, 4, 5], dtype=np.dtype(dtype)) @@ -141,7 +153,13 @@ def test_drop_duplicates_categorical_non_bool_keepfalse( @pytest.fixture def cat_series(self, dtype, ordered): - # no unused categories, unlike cat_series_unused_category + """ + Fixture that creates a Categorical Series with no unused categories. + This fixture creates a Categorical Series based on the given dtype and + ordered parameters. The input series contains categories that are all + used in the actual data, allowing the testing of categorical behavior + without unused categories. + """ cat_array = np.array([1, 2, 3, 4, 5], dtype=np.dtype(dtype)) input2 = np.array([1, 2, 3, 5, 3, 2, 4], dtype=np.dtype(dtype))