diff --git a/doc/source/whatsnew/v1.3.0.rst b/doc/source/whatsnew/v1.3.0.rst index 77bc080892e6c..da262993ca858 100644 --- a/doc/source/whatsnew/v1.3.0.rst +++ b/doc/source/whatsnew/v1.3.0.rst @@ -191,6 +191,8 @@ Datetimelike - Bug in :meth:`DataFrame.first` and :meth:`Series.first` returning two months for offset one month when first day is last calendar day (:issue:`29623`) - Bug in constructing a :class:`DataFrame` or :class:`Series` with mismatched ``datetime64`` data and ``timedelta64`` dtype, or vice-versa, failing to raise ``TypeError`` (:issue:`38575`) - Bug in :meth:`DatetimeIndex.intersection`, :meth:`DatetimeIndex.symmetric_difference`, :meth:`PeriodIndex.intersection`, :meth:`PeriodIndex.symmetric_difference` always returning object-dtype when operating with :class:`CategoricalIndex` (:issue:`38741`) +- Bug in :meth:`Series.where` incorrectly casting ``datetime64`` values to ``int64`` (:issue:`37682`) +- Timedelta ^^^^^^^^^ diff --git a/pandas/core/arrays/numpy_.py b/pandas/core/arrays/numpy_.py index 50d12703c3a30..ae131d8a51ba1 100644 --- a/pandas/core/arrays/numpy_.py +++ b/pandas/core/arrays/numpy_.py @@ -161,7 +161,8 @@ def __init__(self, values: Union[np.ndarray, "PandasArray"], copy: bool = False) f"'values' must be a NumPy array, not {type(values).__name__}" ) - if values.ndim != 1: + if values.ndim == 0: + # Technically we support 2, but do not advertise that fact. raise ValueError("PandasArray must be 1-dimensional.") if copy: diff --git a/pandas/core/internals/blocks.py b/pandas/core/internals/blocks.py index 8fd5d149d30c8..0eca13329f4a6 100644 --- a/pandas/core/internals/blocks.py +++ b/pandas/core/internals/blocks.py @@ -1332,6 +1332,22 @@ def shift(self, periods: int, axis: int = 0, fill_value=None): return [self.make_block(new_values)] + def _maybe_reshape_where_args(self, values, other, cond, axis): + transpose = self.ndim == 2 + + cond = _extract_bool_array(cond) + + # If the default broadcasting would go in the wrong direction, then + # explicitly reshape other instead + if getattr(other, "ndim", 0) >= 1: + if values.ndim - 1 == other.ndim and axis == 1: + other = other.reshape(tuple(other.shape + (1,))) + elif transpose and values.ndim == self.ndim - 1: + # TODO(EA2D): not neceesssary with 2D EAs + cond = cond.T + + return other, cond + def where( self, other, cond, errors="raise", try_cast: bool = False, axis: int = 0 ) -> List["Block"]: @@ -1354,7 +1370,6 @@ def where( """ import pandas.core.computation.expressions as expressions - cond = _extract_bool_array(cond) assert not isinstance(other, (ABCIndex, ABCSeries, ABCDataFrame)) assert errors in ["raise", "ignore"] @@ -1365,17 +1380,7 @@ def where( if transpose: values = values.T - # If the default broadcasting would go in the wrong direction, then - # explicitly reshape other instead - if getattr(other, "ndim", 0) >= 1: - if values.ndim - 1 == other.ndim and axis == 1: - other = other.reshape(tuple(other.shape + (1,))) - elif transpose and values.ndim == self.ndim - 1: - # TODO(EA2D): not neceesssary with 2D EAs - cond = cond.T - - if not hasattr(cond, "shape"): - raise ValueError("where must have a condition that is ndarray like") + other, cond = self._maybe_reshape_where_args(values, other, cond, axis) if cond.ravel("K").all(): result = values @@ -2128,6 +2133,26 @@ def to_native_types(self, na_rep="NaT", **kwargs): result = arr._format_native_types(na_rep=na_rep, **kwargs) return self.make_block(result) + def where( + self, other, cond, errors="raise", try_cast: bool = False, axis: int = 0 + ) -> List["Block"]: + # TODO(EA2D): reshape unnecessary with 2D EAs + arr = self.array_values().reshape(self.shape) + + other, cond = self._maybe_reshape_where_args(arr, other, cond, axis) + + try: + res_values = arr.T.where(cond, other).T + except (ValueError, TypeError): + return super().where( + other, cond, errors=errors, try_cast=try_cast, axis=axis + ) + + # TODO(EA2D): reshape not needed with 2D EAs + res_values = res_values.reshape(self.values.shape) + nb = self.make_block_same_class(res_values) + return [nb] + def _can_hold_element(self, element: Any) -> bool: arr = self.array_values() @@ -2196,6 +2221,7 @@ class DatetimeTZBlock(ExtensionBlock, DatetimeBlock): fillna = DatetimeBlock.fillna # i.e. Block.fillna fill_value = DatetimeBlock.fill_value _can_hold_na = DatetimeBlock._can_hold_na + where = DatetimeBlock.where array_values = ExtensionBlock.array_values diff --git a/pandas/tests/arrays/test_array.py b/pandas/tests/arrays/test_array.py index 779cb7a2350ee..f14d5349dcea3 100644 --- a/pandas/tests/arrays/test_array.py +++ b/pandas/tests/arrays/test_array.py @@ -278,7 +278,7 @@ def test_array_inference_fails(data): tm.assert_extension_array_equal(result, expected) -@pytest.mark.parametrize("data", [np.array([[1, 2], [3, 4]]), [[1, 2], [3, 4]]]) +@pytest.mark.parametrize("data", [np.array(0)]) def test_nd_raises(data): with pytest.raises(ValueError, match="PandasArray must be 1-dimensional"): pd.array(data, dtype="int64") diff --git a/pandas/tests/series/indexing/test_where.py b/pandas/tests/series/indexing/test_where.py index 27bbb47e1d0d1..59c68fba53e25 100644 --- a/pandas/tests/series/indexing/test_where.py +++ b/pandas/tests/series/indexing/test_where.py @@ -464,3 +464,35 @@ def test_where_categorical(klass): df = klass(["A", "A", "B", "B", "C"], dtype="category") res = df.where(df != "C") tm.assert_equal(exp, res) + + +def test_where_datetimelike_categorical(tz_naive_fixture): + # GH#37682 + tz = tz_naive_fixture + + dr = pd.date_range("2001-01-01", periods=3, tz=tz)._with_freq(None) + lvals = pd.DatetimeIndex([dr[0], dr[1], pd.NaT]) + rvals = pd.Categorical([dr[0], pd.NaT, dr[2]]) + + mask = np.array([True, True, False]) + + # DatetimeIndex.where + res = lvals.where(mask, rvals) + tm.assert_index_equal(res, dr) + + # DatetimeArray.where + res = lvals._data.where(mask, rvals) + tm.assert_datetime_array_equal(res, dr._data) + + # Series.where + res = Series(lvals).where(mask, rvals) + tm.assert_series_equal(res, Series(dr)) + + # DataFrame.where + if tz is None: + res = pd.DataFrame(lvals).where(mask[:, None], pd.DataFrame(rvals)) + else: + with pytest.xfail(reason="frame._values loses tz"): + res = pd.DataFrame(lvals).where(mask[:, None], pd.DataFrame(rvals)) + + tm.assert_frame_equal(res, pd.DataFrame(dr))