We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
tz naive case:
index = pd.Index([23, 26, 30]) dti = pd.DatetimeIndex(['2015-09-23', '2015-09-26', '2015-09-30']) ser = pd.Series(dti, index=index).reindex(range(23, 31)) df = pd.DataFrame(ser) >>> ser # for reference 23 2015-09-23 24 NaT 25 NaT 26 2015-09-26 27 NaT 28 NaT 29 NaT 30 2015-09-30 dtype: datetime64[ns] >>> ser.interpolate() 23 2015-09-23 24 NaT 25 NaT 26 2015-09-26 27 NaT 28 NaT 29 NaT 30 2015-09-30 dtype: datetime64[ns] >>> df.interpolate() 0 23 2015-09-23 24 NaT 25 NaT 26 2015-09-26 27 NaT 28 NaT 29 NaT 30 2015-09-30
tz-aware case
index = pd.Index([23, 26, 30]) dti = pd.DatetimeIndex(['2015-09-23', '2015-09-26', '2015-09-30'], tz='US/Central') ser = pd.Series(dti, index=index).reindex(range(23, 31)) df = pd.DataFrame(ser) >>> ser 23 2015-09-23 00:00:00-05:00 24 NaT 25 NaT 26 2015-09-26 00:00:00-05:00 27 NaT 28 NaT 29 NaT 30 2015-09-30 00:00:00-05:00 dtype: datetime64[ns, US/Central] >>> ser.interpolate() 23 2015-09-23 00:00:00-05:00 24 NaT 25 NaT 26 2015-09-26 00:00:00-05:00 27 NaT 28 NaT 29 NaT 30 2015-09-30 00:00:00-05:00 dtype: datetime64[ns, US/Central] >>> df.interpolate() Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python2.7/site-packages/pandas/core/generic.py", line 4738, in interpolate 'object') == len(_maybe_transposed_self.T): File "/usr/local/lib/python2.7/site-packages/pandas/core/frame.py", line 1909, in transpose return super(DataFrame, self).transpose(1, 0, **kwargs) File "/usr/local/lib/python2.7/site-packages/pandas/core/generic.py", line 599, in transpose new_values = self.values.transpose(axes_numbers) File "/usr/local/lib/python2.7/site-packages/pandas/core/base.py", line 696, in transpose nv.validate_transpose(args, kwargs) File "/usr/local/lib/python2.7/site-packages/pandas/compat/numpy/function.py", line 54, in __call__ self.defaults) File "/usr/local/lib/python2.7/site-packages/pandas/util/_validators.py", line 218, in validate_args_and_kwargs validate_kwargs(fname, kwargs, compat_args) File "/usr/local/lib/python2.7/site-packages/pandas/util/_validators.py", line 157, in validate_kwargs _check_for_default_values(fname, kwds, compat_args) File "/usr/local/lib/python2.7/site-packages/pandas/util/_validators.py", line 69, in _check_for_default_values format(fname=fname, arg=key))) ValueError: the 'axes' parameter is not supported in the pandas implementation of transpose()
The ValueError for the DataFrame case is in issue #19198.
The text was updated successfully, but these errors were encountered:
we have tons of interpolation issues, pls find the duplicate and close this one
Sorry, something went wrong.
Dup of #11701
Successfully merging a pull request may close this issue.
tz naive case:
tz-aware case
The ValueError for the DataFrame case is in issue #19198.
The text was updated successfully, but these errors were encountered: