diff --git a/doc/source/_static/style-excel.png b/doc/source/_static/style-excel.png new file mode 100644 index 0000000000000..ee8a14a410d48 Binary files /dev/null and b/doc/source/_static/style-excel.png differ diff --git a/doc/source/html-styling.ipynb b/doc/source/html-styling.ipynb index 1a97378fd30b1..331bee4c7a209 100644 --- a/doc/source/html-styling.ipynb +++ b/doc/source/html-styling.ipynb @@ -26,6 +26,8 @@ "- [Builtin Styles](#Builtin-Styles)\n", "- [Other options](#Other-options)\n", "- [Sharing Styles](#Sharing-Styles)\n", + "- [CSS Classes](#CSS-Classes)\n", + "- [Export to Excel](#Export-to-Excel)\n", "- [Limitations](#Limitations)\n", "- [Terms](#Terms)\n", "- [Extensibility](#Extensibility)" @@ -57,9 +59,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", @@ -82,9 +82,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style" @@ -102,9 +100,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.highlight_null().render().split('\\n')[:10]" @@ -129,9 +125,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def color_negative_red(val):\n", @@ -155,9 +149,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "s = df.style.applymap(color_negative_red)\n", @@ -187,9 +179,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def highlight_max(s):\n", @@ -203,9 +193,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.apply(highlight_max)" @@ -229,9 +217,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.\\\n", @@ -256,9 +242,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "def highlight_max(data, color='yellow'):\n", @@ -285,9 +269,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.apply(highlight_max, color='darkorange', axis=None)" @@ -335,9 +317,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.apply(highlight_max, subset=['B', 'C', 'D'])" @@ -353,9 +333,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.applymap(color_negative_red,\n", @@ -388,9 +366,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.format(\"{:.2%}\")" @@ -406,9 +382,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.format({'B': \"{:0<4.0f}\", 'D': '{:+.2f}'})" @@ -424,9 +398,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.format({\"B\": lambda x: \"±{:.2f}\".format(abs(x))})" @@ -449,9 +421,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.highlight_null(null_color='red')" @@ -467,9 +437,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "import seaborn as sns\n", @@ -490,9 +458,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "# Uses the full color range\n", @@ -502,9 +468,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "# Compreess the color range\n", @@ -524,9 +488,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.bar(subset=['A', 'B'], color='#d65f5f')" @@ -542,9 +504,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.highlight_max(axis=0)" @@ -553,9 +513,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.highlight_min(axis=0)" @@ -571,9 +529,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.set_properties(**{'background-color': 'black',\n", @@ -598,9 +554,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df2 = -df\n", @@ -611,9 +565,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "style2 = df2.style\n", @@ -666,9 +618,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "with pd.option_context('display.precision', 2):\n", @@ -688,9 +638,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style\\\n", @@ -723,9 +671,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df.style.set_caption('Colormaps, with a caption.')\\\n", @@ -751,9 +697,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "from IPython.display import HTML\n", @@ -809,6 +753,44 @@ "- Data cells include `data`" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Export to Excel\n", + "\n", + "*New in version 0.19.0*\n", + "\n", + "
*Experimental: This is a new feature and still under development. We'll be adding features and possibly making breaking changes in future releases. We'd love to hear your [feedback](https://github.com/pandas-dev/pandas/issues).*
\n", + "\n", + "Some support is available for exporting styled `DataFrames` to Excel worksheets using the `OpenPyXL` engine. CSS2.2 properties handled include:\n", + "\n", + "- `background-color`\n", + "- `border-style`, `border-width`, `border-color` and their {`top`, `right`, `bottom`, `left` variants}\n", + "- `color`\n", + "- `font-family`\n", + "- `font-style`\n", + "- `font-weight`\n", + "- `text-align`\n", + "- `text-decoration`\n", + "- `vertical-align`\n", + "- `white-space: nowrap`\n", + "\n", + "Only CSS2 named colors and hex colors of the form `#rgb` or `#rrggbb` are currently supported." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "df.style.\\\n", + " applymap(color_negative_red).\\\n", + " apply(highlight_max).\\\n", + " to_excel('styled.xlsx', engine='openpyxl')" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -849,9 +831,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "from IPython.html import widgets\n", @@ -866,9 +846,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "def magnify():\n", @@ -887,9 +865,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "np.random.seed(25)\n", @@ -960,8 +936,7 @@ "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.5.1" + "pygments_lexer": "ipython3" } }, "nbformat": 4, diff --git a/doc/source/whatsnew/v0.20.0.txt b/doc/source/whatsnew/v0.20.0.txt index d571c0f2d9620..b8845ddd2fd64 100644 --- a/doc/source/whatsnew/v0.20.0.txt +++ b/doc/source/whatsnew/v0.20.0.txt @@ -316,6 +316,32 @@ To convert a ``SparseDataFrame`` back to sparse SciPy matrix in COO format, you .. _whatsnew_0200.enhancements.other: +Stylers now support Excel output +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Experimental support has been added to export ``DataFrame.style`` to Excel using the ``openpyxl`` engine. (:issue:`15530`) + +For example, after running the following, ``styled.xlsx`` renders as below: + +.. ipython:: python + + import pandas as pd + import numpy as np + + np.random.seed(24) + df = pd.DataFrame({'A': np.linspace(1, 10, 10)}) + df = pd.concat([df, pd.DataFrame(np.random.randn(10, 4), columns=list('BCDE'))], + axis=1) + df.iloc[0, 2] = np.nan + df.style.\ + applymap(color_negative_red).\ + apply(highlight_max).\ + to_excel('styled.xlsx', engine='openpyxl') + +.. image:: _static/style-excel.png + +See the :ref:`Style documentation