-
Notifications
You must be signed in to change notification settings - Fork 6
/
Theorem_fields_and_potential_wave_equations.tex
41 lines (41 loc) · 1.32 KB
/
Theorem_fields_and_potential_wave_equations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
%
% Copyright © 2018 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
\maketheorem{The potential wave equations.}{thm:generalPotential:40}{
%%%In terms of the potential components, the electric field vector and the magnetic field bivector are
%%%\begin{equation*}
%%%\begin{aligned}
%%%\BE &=
%%%\gpgrade{\conjstgrad A}{1}
%%%=
%%% - \spacegrad \phi
%%% - \PD{t}{\BA}
%%% - \inv{\epsilon} \spacegrad \cross \BF \\
%%%I \eta \BH &=
%%%\gpgrade{\conjstgrad A}{2}
%%%=
%%% I \eta
%%% \lr{
%%% - \spacegrad \phi_\txtm
%%% - \PD{t}{\BF}
%%% + \inv{\mu} \spacegrad \cross \BA
%%% }
%%%.
%%%\end{aligned}
%%%\end{equation*}
The potentials are related to the sources by
\begin{equation*}
\begin{aligned}
\dAlembertian
\phi &= -\frac{\rho}{\epsilon} - \PD{t}{} \lr{ \spacegrad \cdot \BA + \inv{c^2} \PD{t}{\phi} } \\
\dAlembertian
\BA &= -\mu \BJ + \spacegrad \lr{ \spacegrad \cdot \BA + \inv{c^2} \PD{t}{\phi} } \\
\dAlembertian
\BF &= - \epsilon \BM + \spacegrad \lr{ \spacegrad \cdot \BF + \inv{c^2} \PD{t}{\phi_\txtm} } \\
\dAlembertian
\phi_\txtm &= -\frac{\rho_\txtm}{\mu} - \PD{t}{} \lr{ \spacegrad \cdot \BF + \inv{c^2} \PD{t}{\phi_\txtm} }.
\end{aligned}
\end{equation*}
Reminder: (\(\dAlembertian\): see \cref{dfn:continuity:120})
} % theorem