-
Notifications
You must be signed in to change notification settings - Fork 1
/
discreteFourierMatrixForm.tex
231 lines (231 loc) · 8.38 KB
/
discreteFourierMatrixForm.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
%
% Copyright © 2014 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
%\input{../blogpost.tex}
%\renewcommand{\basename}{discreteFourierMatrixForm}
%\renewcommand{\dirname}{notes/ece1254/}
%%\newcommand{\dateintitle}{}
%%\newcommand{\keywords}{}
%
%\input{../peeter_prologue_print2.tex}
%
%\beginArtNoToc
%
%\generatetitle{Matrix form for discrete time Fourier transform}
%\chapter{Matrix form for discrete time Fourier transform}
\label{chap:discreteFourierMatrixForm}
%
\paragraph{Transform pair}
\index{DFT|see {discrete Fourier transform}}
\index{discrete Fourier transform}
%
In \citep{phy487:discreteFourierTransform} a verification of the discrete Fourier transform pairs was performed. A much different looking discrete Fourier transform pair is given in \citep{giannini2004NonlinearMicrowaveCircuitDesign} \S A.4. This transform pair samples the points at what are called the \textAndIndex{Nykvist time instant}s given by
%
\begin{equation}\label{eqndiscreteFourierMatrixForm:20}
t_k = \frac{T k}{2 N + 1}, \qquad k \in [-N, \cdots N]
\end{equation}
%
Note that the endpoints of these sampling points are not \( \pm T/2 \), but are instead at
%
\begin{equation}\label{eqndiscreteFourierMatrixForm:40}
\pm \frac{T}{2} \inv{1 + 1/N},
\end{equation}
%
which are slightly within the interior of the \( [-T/2, T/2] \) range of interest. The reason for this slightly odd seeming selection of sampling times becomes clear if one calculate the inversion relations.
%
Given a periodic (\( \omega_0 T = 2 \pi \)) bandwidth limited signal evaluated only at the Nykvist times \( t_k \),
%
%\begin{equation}\label{eqndiscreteFourierMatrixForm:60}
\boxedEquation{eqndiscreteFourierMatrixForm:80}{
x(t_k) = \sum_{n = -N}^N X_n e^{ j n \omega_0 t_k},
}
%\end{equation}
%
assume that an inversion relation can be found. To find \( X_n \) evaluate the sum
%
\begin{equation}\label{eqndiscreteFourierMatrixForm:100}
\begin{aligned}
\sum_{k = -N}^N x(t_k) e^{-j m \omega_0 t_k}
&=
\sum_{k = -N}^N
\lr{
\sum_{n= -N}^N X_n e^{ j n \omega_0 t_k}
}
e^{-j m \omega_0 t_k}
\\ &=
\sum_{n= -N}^N X_n
\sum_{k= -N}^N
e^{ j (n -m )\omega_0 t_k}
\end{aligned}
\end{equation}
%
This interior sum has the value \( 2 N + 1 \) when \( n = m \). For \( n \ne m \), and
\( a = e^{j (n -m ) \frac{2 \pi}{2 N + 1}} \), this is
%
\begin{equation}\label{eqndiscreteFourierMatrixForm:120}
\begin{aligned}
\sum_{k = -N}^N
e^{ j (n -m )\omega_0 t_k}
&=
\sum_{k = -N}^N
e^{ j (n -m )\omega_0 \frac{T k}{2 N + 1}}
\\ &=
\sum_{k= -N}^N a^k
\\ &=
a^{-N} \sum_{k= -N}^N a^{k+ N}
\\ &=
a^{-N} \sum_{r= 0}^{2 N} a^{r}
\\ &=
a^{-N} \frac{a^{2 N + 1} - 1}{a - 1}.
\end{aligned}
\end{equation}
%
Since \( a^{2 N + 1} = e^{2 \pi j (n - m)} = 1 \), this sum is zero when \( n \ne m \). This means that
%
\begin{equation}\label{eqndiscreteFourierMatrixForm:140}
\sum_{k = -N}^N
e^{ j (n -m )\omega_0 t_k} = (2 N + 1) \delta_{n,m},
\end{equation}
%
which provides the desired Fourier inversion relation
%
%\begin{equation}\label{eqndiscreteFourierMatrixForm:160}
\boxedEquation{eqndiscreteFourierMatrixForm:180}{
X_m = \inv{2 N + 1} \sum_{k = -N}^N x(t_k) e^{-j m \omega_0 t_k}.
}
%\end{equation}
%
\paragraph{Matrix form}
%
The discrete time Fourier transform has been seen to have the form
%
\begin{subequations}
\begin{equation}\label{eqn:discreteFourierMatrixForm:200}
x_k = \sum_{n = -N}^N X_n e^{ 2 \pi j n k /(2 N + 1)}
\end{equation}
\begin{equation}\label{eqn:discreteFourierMatrixForm:220}
X_n = \inv{2 N + 1} \sum_{k = -N}^N x_k e^{- 2 \pi j n k /(2 N + 1)}.
\end{equation}
\end{subequations}
%
A matrix representation of this form is desired. Let
%
\begin{subequations}
\begin{equation}\label{eqndiscreteFourierMatrixForm:240}
\Bx =
\begin{bmatrix}
x_{-N} \\
\vdots \\
x_0 \\
\vdots \\
x_{N}
\end{bmatrix}
\end{equation}
\begin{equation}\label{eqndiscreteFourierMatrixForm:260}
\BX =
\begin{bmatrix}
X_{-N} \\
\vdots \\
X_0 \\
\vdots \\
X_{N}
\end{bmatrix}
\end{equation}
\end{subequations}
%
\Cref{eqn:discreteFourierMatrixForm:200} written out in full is
\begin{equation}\label{eqn:discreteFourierMatrixForm:280}
\begin{aligned}
x_k
&= X_{-N} e^{ -2 \pi j N k /(2 N + 1)} \\
&+ X_{1-N} e^{ -2 \pi j \lr{N-1} k /(2 N + 1)} \\
&+ \cdots \\
&+ X_0 \\
&+ \cdots \\
&+ X_{N-1} e^{ 2 \pi j \lr{N-1} k /(2 N + 1)} \\
&+ X_N e^{ 2 \pi j N k /(2 N + 1)}
\end{aligned}
\end{equation}
%
Following the FFT discussion in \citep{press1996numerical}, let
\( W = e^{ 2 \pi j /(2 N + 1) } \). The matrix relation is
%
\begin{equation}\label{eqn:discreteFourierMatrixForm:300}
\Bx = \Bw \BX,
\end{equation}
where \( \Bw \) is
\begin{equation}\label{eqn:discreteFourierMatrixForm:300b}
\begin{bsmallmatrix}
W^{N N } & W^{\lr{N-1} N } & \Compactcdots & 1 & \Compactcdots & W^{- \lr{N-1} N } & W^{- N N } \\
W^{N \lr{N-1} } & W^{\lr{N-1} \lr{N-1} } & \Compactcdots & 1 & \Compactcdots & W^{- \lr{N-1} \lr{N-1} } & W^{- N \lr{N-1} } \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
W^{- N \lr{N-1} } & W^{- \lr{N-1} \lr{N-1} } & \Compactcdots & 1 & \Compactcdots & W^{{N-1} \lr{N-1} } & W^{N \lr{N-1} } \\
W^{- N N } & W^{\lr{1 - N} N } & \Compactcdots & 1 & \Compactcdots & W^{\lr{N-1} N } & W^{N N } \\
\end{bsmallmatrix}
\end{equation}
%
Similarly, from \cref{eqn:discreteFourierMatrixForm:220}, the inverse relation expands out to
%
\begin{equation}\label{eqn:discreteFourierMatrixForm:320}
\begin{aligned}
( 2 N + 1 ) X_n
&= x_{-N} e^{ 2 \pi j n N/(2 N + 1)} \\
&+ x_{1-N} e^{ 2 \pi j n \lr{ N-1 }/(2 N + 1)} \\
&\cdots \\
&+ x_0 \\
&\cdots \\
&+ x_{N-1} e^{- 2 \pi j n \lr{N-1}/(2 N + 1)} \\
&+ x_N e^{- 2 \pi j n N /(2 N + 1)},
\end{aligned}
\end{equation}
%
with a matrix form of
%
\begin{equation}\label{eqn:discreteFourierMatrixForm:340}
( 2 N + 1 ) \BX = \BY,
\end{equation}
where \( \BY \) is
\begin{equation}\label{eqn:discreteFourierMatrixForm:340b}
\begin{bsmallmatrix}
W^{- N N } & W^{- N \lr{N-1}} &\Compactcdots & 1 &\Compactcdots & W^{N \lr{ N-1 }} & W^{N N} \\
W^{- \lr{N-1} N } & W^{- \lr{N-1} \lr{N-1}} &\Compactcdots & 1 &\Compactcdots & W^{\lr{N-1} \lr{ N-1 }} & W^{\lr{N-1} N} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
W^{\lr{N-1} N } & W^{\lr{N-1} \lr{N-1}} &\Compactcdots & 1 &\Compactcdots & W^{- \lr{N-1} \lr{ N-1 }} & W^{- \lr{N-1} N} \\
W^{N N } & W^{N \lr{N-1}} &\Compactcdots & 1 &\Compactcdots & W^{- N \lr{ N-1 }} & W^{- N N} \\
\end{bsmallmatrix}.
\end{equation}
%
Let \( \BF \) equal
%
\begin{equation}\label{eqn:discreteFourierMatrixForm:360}
%\BF =
\begin{bsmallmatrix}
W^{N N } & W^{\lr{N-1} N } & \Compactcdots & 1 & \Compactcdots & W^{- \lr{N-1} N } & W^{- N N } \\
W^{N \lr{N-1} } & W^{\lr{N-1} \lr{N-1} } & \Compactcdots & 1 & \Compactcdots & W^{- \lr{N-1} \lr{N-1} } & W^{- N \lr{N-1} } \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
W^{- N \lr{N-1} } & W^{- \lr{N-1} \lr{N-1} } & \Compactcdots & 1 & \Compactcdots & W^{{N-1} \lr{N-1} } & W^{N \lr{N-1} } \\
W^{- N N } & W^{\lr{1 - N} N } & \Compactcdots & 1 & \Compactcdots & W^{\lr{N-1} N } & W^{N N } \\
\end{bsmallmatrix},
\end{equation}
%
the discrete transform pair has the following compactly matrix representation
%
\begin{subequations}
\begin{equation}\label{eqn:discreteFourierMatrixForm:380}
\Bx = \BF \BX
\end{equation}
\begin{equation}\label{eqn:discreteFourierMatrixForm:400}
\BX = \inv{2 N + 1} \overbar{\BF} \Bx,
\end{equation}
\end{subequations}
%
where \( \overbar{\BF} \) is the complex conjugate of \( \BF \).
%
%\EndArticle