-
Notifications
You must be signed in to change notification settings - Fork 1
/
stabilityLDEandDiscreteTime.tex
192 lines (192 loc) · 5.33 KB
/
stabilityLDEandDiscreteTime.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
%
% Copyright © 2014 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
\input{../latex/blogpost.tex}
\renewcommand{\basename}{stabilityLDEandDiscreteTime}
\renewcommand{\dirname}{notes/ece1254/}
%\newcommand{\dateintitle}{}
%\newcommand{\keywords}{ece1254}
%
%\input{../peeter_prologue_print2.tex}
%
%\beginArtNoToc
%
%\generatetitle{Stability of discretized linear differential equations}
\label{chap:stabilityLDEandDiscreteTime}
%
To motivate the methods used to discuss
stability of linear multistep methods, it is helpful to take a step back and review stability concepts for LDE systems.
%
By way of example, consider a second order LDE homogeneous system defined by
%
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:20}
\frac{d^2 x}{dt^2} + 3 \frac{dx}{dt} + 2 = 0.
\end{equation}
%
Such a system can be solved by assuming an exponential solution, say
%
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:40}
x(t) = e^{s t}.
\end{equation}
%
Substitution gives
%
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:60}
e^{st} \lr{ s^2 + 3 s + 2 } = 0,
\end{equation}
%
The polynomial part of this equation, the \textAndIndex{characteristic equation} has roots \( s = -2, -1 \).
%
%F1
%
The general solution of \cref{eqn:stabilityLDEandDiscreteTime:20} is formed by a superposition of solutions for each value of \(s\)
%
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:80}
x(t) = a e^{-2 t} + b e^{-t}.
\end{equation}
%
%
Independent of any selection of the superposition constants \( a, b \), this function will not blow up as \( t \rightarrow \infty \).
%
%F2 : plot it
%
This ``stability'' is due to the fact that both of the characteristic equation roots lie in the left hand Argand plane.
%
Now consider a discretized form of this LDE. This will have the form
%
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:100}
\begin{aligned}
0 &=
\inv{\lr{\Delta t}^2}
\lr{ x_{n+2} - 2 x_{n-1} + x_n } + \frac{3}{\Delta t} \lr{ x_{n+1} - x_n } + 2 x_n
\\ &=
x_{n+2} \lr{
\inv{\lr{\Delta t}^2}
}
+
x_{n+1} \lr{
\frac{3}{\Delta t}
-\frac{2}{\lr{\Delta t}^2}
}
+
x_{n} \lr{
\frac{1}{\lr{\Delta t}^2}
-\frac{3}{\Delta t}
+ 2
},
\end{aligned}
\end{equation}
%
or
%
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:220}
0
=
x_{n+2}
+
x_{n+1} \lr{
3 \Delta t - 2
}
+
x_{n} \lr{
1 - 3 \Delta t + 2 \lr{ \Delta t}^2
}.
\end{equation}
%
Note that after discretization, each subsequent index corresponds to a time shift. Also observe that the coefficients of this discretized equation are dependent on the discretization interval size \( \Delta t \). If the specifics of those coefficients are ignored, a general form with the following structure can be observed
%
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:120}
0 =
x_{n+2} \gamma_0
+
x_{n+1} \gamma_1
+
x_{n} \gamma_2.
\end{equation}
%
It turns out that, much like the LDE solution by characteristic polynomial, it is possible to attack this problem by assuming a solution of the form
%
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:140}
x_n = C z^n.
\end{equation}
%
A time shift index change \( x_n \rightarrow x_{n+1} \) results in a power adjustment in this assumed solution. This substitution applied to \cref{eqn:stabilityLDEandDiscreteTime:120} yields
%
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:160}
0 =
C z^n
\lr{
z^{2} \gamma_0
+
z \gamma_1
+
1 \gamma_2
},
\end{equation}
%
Suppose that this polynomial has roots \( z \in \{z_1, z_2\} \). A superposition, such as
%
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:180}
x_n = a z_1^n + b z_2^n,
\end{equation}
%
will also be a solution since insertion of this into the RHS of \cref{eqn:stabilityLDEandDiscreteTime:120} yields
%
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:200}
a z_1^n
\lr{
z_1^{2} \gamma_0
+
z_1 \gamma_1
+
\gamma_2
}
+
b
z_2^n
\lr{
z_2^{2} \gamma_0
+
z_2 \gamma_1
+
\gamma_2
}
=
a z_1^n \times 0
+b z_2^n \times 0.
\end{equation}
%
The zero equality follows since \( z_1, z_2 \) are both roots of the characteristic equation for this discretized LDE.
In the discrete \( z \) domain stability requires that the roots satisfy the bound \( \Abs{z} < 1 \), a different stability criteria than in the continuous domain. In fact, there is no a-priori guarantee that stability in the continuous domain will imply stability in the discretized domain.
%
Let's plot those z-domain roots for this example LDE, using \( \Delta t \in \{ 1/2, 1, 2 \} \). The respective characteristic polynomials are
%
\begin{subequations}
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:260}
0 = z^2 - \inv{2} z = z \lr{ z - \inv{2} }
\end{equation}
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:240}
0 = z^2 + z = z\lr{ z + 1 }
\end{equation}
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:280}
0 = z^2 + 4 z + 3 = (z + 3)(z + 1).
\end{equation}
\end{subequations}
%
These have respective roots
\begin{subequations}
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:300}
z = 0, \inv{2}
\end{equation}
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:320}
z = 0, -1
\end{equation}
\begin{equation}\label{eqn:stabilityLDEandDiscreteTime:340}
z = -1, -3
\end{equation}
\end{subequations}
%
Only the first discretization of these three yields stable solutions in the z domain, although it appears that \( \Delta t = 1 \) is right on the boundary.
%
%\EndNoBibArticle