-
Notifications
You must be signed in to change notification settings - Fork 0
/
qftLecture7.tex
326 lines (311 loc) · 11 KB
/
qftLecture7.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
%
% Copyright © 2018 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
%{
%%\input{../latex/blogpost.tex}
%%\renewcommand{\basename}{qftLecture7}
%%\renewcommand{\dirname}{notes/phy2403/}
%%\newcommand{\keywords}{PHY2403H}
%%\input{../latex/peeter_prologue_print2.tex}
%%
%%%\usepackage{phy2403}
%%\usepackage{peeters_braket}
%%\usepackage{peeters_layout_exercise} % makedefinition
%%\usepackage{peeters_figures}
%%\usepackage{mathtools}
%%\usepackage{siunitx}
%%\usepackage{macros_cal} % LL
%%
%%\beginArtNoToc
%%\generatetitle{PHY2403H Quantum Field Theory. Lecture 7: Symmetries, translation currents, energy momentum tensor. Taught by Prof. Erich Poppitz}
%\chapter{Symmetries, translation currents, energy momentum tensor.}
\index{translation current}
\label{chap:qftLecture7}
%\paragraph{DISCLAIMER: Very rough notes from class, with some additional side notes.}
%
%These are notes for the UofT course PHY2403H, Quantum Field Theory I, taught by Prof. Erich Poppitz fall 2018.
%%, covering \textchapref{{1}} \citep{peskin1995introduction} content.
%
\section{Symmetries.}
\index{symmetries}
Given the complexities of the non-linear systems we want to investigate, examination of symmetries gives us simpler problems that we can solve.
\begin{itemize}
\item ``internal'' symmetries. This means that the symmetries do not act on space time \( (\Bx, t) \). An example is
\begin{equation}\label{eqn:qftLecture7:20}
\phi^i =
\begin{bmatrix}
\psi_1 \\
\psi_2 \\
\vdots \\
\psi_N \\
\end{bmatrix}
\end{equation}
If we map
\( \phi^i \rightarrow O^i_j \phi^j \) where \( O^\T O = 1 \), then we call this an internal symmetry.
The corresponding Lagrangian density might be something like
\begin{equation}\label{eqn:qftLecture7:40}
\LL = \inv{2} \partial_\mu \Bphi \cdot \partial^\mu \Bphi - \frac{m^2}{2} \Bphi \cdot \Bphi - V(\Bphi \cdot \Bphi)
\end{equation}
\item spacetime symmetries: Translations, rotations, boosts, dilatations. We will consider continuous symmetries, which can be defined as a succession of infinitesimal transformations.
An example from \(O(2)\) is a rotation
\begin{equation}\label{eqn:qftLecture7:60}
\begin{bmatrix}
\phi^1 \\
\phi^2 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\cos\alpha & \sin\alpha \\
-\sin\alpha & \cos\alpha \\
\end{bmatrix}
\begin{bmatrix}
\phi^1 \\
\phi^2
\end{bmatrix},
\end{equation}
or if \( \alpha \sim 0 \)
\begin{equation}\label{eqn:qftLecture7:80}
\begin{bmatrix}
\phi^1 \\
\phi^2 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & \alpha \\
-\alpha & 1\\
\end{bmatrix}
\begin{bmatrix}
\phi^1 \\
\phi^2
\end{bmatrix}
=
\begin{bmatrix}
\phi^1 \\
\phi^2
\end{bmatrix}
+
\alpha
\begin{bmatrix}
\phi^2 \\
-\phi^1
\end{bmatrix}
\end{equation}
In index notation we write
\begin{equation}\label{eqn:qftLecture7:100}
\phi^i \rightarrow \phi^i + \alpha e^{ij} \phi^j,
\end{equation}
where \( \epsilon^{12} = +1, \epsilon^{21} = -1 \) is the completely antisymmetric tensor. This can be written in more general form as
\begin{equation}\label{eqn:qftLecture7:120}
\phi^i \rightarrow \phi^i + \delta \phi^i,
\end{equation}
where \( \delta \phi^i \) is considered to be an infinitesimal transformation.
\end{itemize}
\index{symmetry}
\makedefinition{Symmetry}{dfn:qftLecture7:140}{
A symmetry means that there is some transformation
\begin{equation*}
\phi^i \rightarrow \phi^i + \delta \phi^i,
\end{equation*}
where
\( \delta \phi^i \) is an infinitesimal transformation, and the equations of motion are invariant under this transformation.
} % definition
\index{Noether's theorem}
\maketheorem{Noether's theorem (1st).}{thm:qftLecture7:160}{
If the equations of motion re invariant under \( \phi^\mu \rightarrow \phi^\mu + \delta \phi^\mu \), then there exists a conserved current \( j^\mu \) such that \( \partial_\mu j^\mu = 0 \).
} % theorem
Noether's first theorem applies to global symmetries, where the parameters are the same for all \( (\Bx, t)\). Gauge symmetries are not examples of such global symmetries.
\begin{proof}
Given a Lagrangian density \( \LL(\phi(x), \phi_{,\mu}(x)) \), where \( \phi_{,\mu} \equiv \partial_\mu \phi \). The action is
\begin{equation}\label{eqn:qftLecture7:160}
S = \int d^d x \LL.
\end{equation}
The equations of motion are invariant if under \( \phi(x) \rightarrow \phi'(x) = \phi(x) + \delta_\epsilon \phi(x)\), we have
\begin{equation}\label{eqn:qftLecture7:180}
\LL(\phi) \rightarrow \LL'(\phi') = \LL(\phi) + \partial_\mu J_\epsilon^\mu(\phi) + O(\epsilon^2).
\end{equation}
Then there exists a conserved current. In QFT we say that the E.O.M's are ``on shell''.
Note that \cref{eqn:qftLecture7:180} is a
symmetry since we have added a total derivative to the Lagrangian which leaves the equations of motion of unchanged.
In general, the change of action under arbitrary variation of \( \delta \phi\) of the fields is
\begin{equation}\label{eqn:qftLecture7:200}
\begin{aligned}
\delta S
&=
\int d^d x \delta \LL(\phi, \partial_\mu \phi)
\\&=
\int d^d x \lr{
\PD{\phi}{\LL} \delta \phi
+
\PD{(\partial_\mu \phi)}{\LL} \delta \partial_\mu \phi
}
\\&=
\int d^d x \lr{
\partial_\mu \lr{ \PD{(\partial_\mu \phi)}{\LL} } \delta \phi
+
\PD{(\partial_\mu \phi)}{\LL} \partial_\mu \delta \phi
}
\\&=
\int d^d x
\partial_\mu \lr{ \frac{\delta \LL}{\delta(\partial_\mu \phi)} \delta \phi }.
\end{aligned}
\end{equation}
However from \cref{eqn:qftLecture7:180}
\begin{equation}\label{eqn:qftLecture7:220}
\delta_\epsilon \LL = \partial_\mu J_\epsilon^\mu(\phi, \partial_\mu \phi),
\end{equation}
so after equating these variations we fine that
\begin{equation}\label{eqn:qftLecture7:240}
\delta S = \int d^d x \delta_\epsilon \LL = \int d^d x \partial_\mu J_\epsilon^\mu,
\end{equation}
or
\begin{equation}\label{eqn:qftLecture7:260}
0 = \int d^d x
\partial_\mu \lr{ \frac{\delta \LL}{\delta(\partial_\mu \phi)} \delta \phi - J_\epsilon^\mu },
\end{equation}
or \( \partial_\mu j^\mu = 0 \) provided
\boxedEquation{eqn:qftLecture7:280}{
j^\mu =
\frac{\delta \LL}{\delta(\partial_\mu \phi)} \delta_\epsilon \phi - J_\epsilon^\mu.
}
Integrating the divergence of the current over a space time volume, perhaps that of \cref{fig:spacetimeCylinder:spacetimeCylinderFig1}, is also zero. That is
%\imageFigure{../figures/phy2403-quantum-field-theory/spacetimeCylinderFig1}{Cylindrical spacetime boundary.}{fig:spacetimeCylinder:spacetimeCylinderFig1}{0.3}
\begin{equation}\label{eqn:qftLecture7:300}
\begin{aligned}
0
&=
\int d^4 x \, \partial_\mu j^\mu
\\&=
\int d^3 \Bx dt \, \partial_\mu j^\mu
\\&=
\int d^3 \Bx dt \, \partial_t j^0 -
\cancel{\int d^3 \Bx dt \spacegrad \cdot \Bj},
\end{aligned}
\end{equation}
where the spatial divergence is zero assuming there's no current leaving the volume on the infinite boundary (no \(\Bj\) at spatial infinity.)
We write
\begin{equation}\label{eqn:qftLecture7:560}
Q = \int d^3x j^0,
\end{equation}
and call this the on-shell charge associated with the symmetry.
\end{proof}
\index{on-shell}
\section{Spacetime translation.}
\index{spacetime translation}
A spacetime translation has the form
\begin{equation}\label{eqn:qftLecture7:320}
x^\mu \rightarrow {x'}^\mu = x^\mu + a^\mu,
\end{equation}
where the fields transform as
\begin{equation}\label{eqn:qftLecture7:340}
\phi(x) \rightarrow \phi'(x') = \phi(x).
\end{equation}
Contrast this to a Lorentz transformation that had the form \( x^\mu \rightarrow {x'}^\mu = {\Lambda^\mu}_\nu x^\nu \).
If \(\phi'(x + a) = \phi(x) \), then
\begin{equation}\label{eqn:qftLecture7:360}
\phi'(x) + a^\mu \partial_\mu \phi'(x) =
\phi'(x) + a^\mu \partial_\mu \phi(x) =
\phi(x),
\end{equation}
so
\begin{equation}\label{eqn:qftLecture7:380}
\begin{aligned}
\phi'(x)
&= \phi(x) - a^\mu \partial_\mu \phi'(x)
\\&= \phi(x) + \delta_a \phi(x),
\end{aligned}
\end{equation}
or
\begin{equation}\label{eqn:qftLecture7:580}
\delta_a \phi(x) = - a^\mu \partial_\mu \phi(x).
\end{equation}
Under \( \phi \rightarrow \phi - a^\mu \partial_\mu \phi \), we have
\begin{equation}\label{eqn:qftLecture7:400}
\LL(\phi) \rightarrow \LL(\phi) - a^\mu \partial_\mu \LL.
\end{equation}
Let's calculate this with our scalar theory Lagrangian
\begin{equation}\label{eqn:qftLecture7:420}
\LL = \inv{2} \partial_\mu \phi \partial^\mu \phi - \frac{m^2}{2} \phi^2 - V(\phi).
\end{equation}
The Lagrangian variation\footnote{Using: \( \partial_\alpha((1/2)\partial_\mu \phi \partial^\mu \phi) = 2(1/2) \partial_\mu \phi( \partial_\alpha \partial^\mu \phi)\).} is
\begin{equation}\label{eqn:qftLecture7:440}
\begin{aligned}
\evalbar{\delta \LL}{\phi \rightarrow \phi + \delta \phi, \delta\phi = - a^\mu \partial_\mu \phi}
&=
(\partial_\mu \phi) \delta (\partial^\mu \phi) - m^2 \phi \delta \phi - \PD{\phi}{V} \delta \phi
\\&=
(\partial_\mu \phi)(-a^\nu \partial_\nu \partial^\mu \phi) + m^2 \phi a^\nu \partial_\nu \phi + \PD{\phi}{V} a^\nu \partial_\nu \phi
\\&=
- a^\nu \partial_\nu \lr{ \inv{2} \partial_\mu \phi \partial^\mu \phi - \frac{m^2}{2} \phi^2 - V(\phi) }
\\&=
- a^\nu \partial_\nu \LL,
\end{aligned}
\end{equation}
so the current is
\begin{equation}\label{eqn:qftLecture7:600}
\begin{aligned}
j^\mu
&=
(\partial^\mu \phi) (-a^\nu \partial_\nu \phi) + a^\mu \LL
\\&=
-a^\nu \lr{ \partial^\mu \phi \partial_\nu \phi - \delta^\mu_\nu \LL }.
\end{aligned}
\end{equation}
We really have a current for each \( \nu \) direction and can make that explicit writing
\begin{equation}\label{eqn:qftLecture7:460}
\begin{aligned}
\delta_\nu \LL
&= -\partial_\nu \LL
\\&= - \partial_\mu \lr{ {\delta^\mu}_\nu \LL }
\\&= \partial_\mu {j^\mu}_\nu
\end{aligned}
\end{equation}
we write
\begin{equation}\label{eqn:qftLecture7:480}
{j^\mu}_\nu = \PD{x_\mu}{\phi} \lr{ - \PD{x^\nu}{\phi} } + {\delta^\mu}_\nu \LL,
\end{equation}
where \( \nu \) are labels which coordinates are translated:
\begin{equation}\label{eqn:qftLecture7:500}
\begin{aligned}
\partial_\nu \phi &= - \partial_\nu \phi \\
\partial_\nu \LL &= - \partial_\nu \LL.
\end{aligned}
\end{equation}
We call the conserved quantities elements of the energy-momentum tensor, and write it as
\index{energy momentum tensor}
\boxedEquation{eqn:qftLecture7:520}{
{T^\mu}_\nu = -\PD{x_\mu}{\phi} \PD{x^\nu}{\phi} + {\delta^\mu}_\nu \LL.
}
Incidentally, we picked a non-standard sign convention for the tensor, as an explicit expansion of \( T^{00} \), the energy density component, shows
\begin{equation}\label{eqn:qftLecture7:540}
\begin{aligned}
{T^0}_0
&=
-\PD{t}{\phi}
\PD{t}{\phi}
+\inv{2}
\PD{t}{\phi}
\PD{t}{\phi}
- \inv{2} (\spacegrad \phi) \cdot (\spacegrad \phi)
- \frac{m^2}{2} \phi^2 - V(\phi)
\\&=
-\inv{2} \PD{t}{\phi} \PD{t}{\phi}
- \inv{2} (\spacegrad \phi) \cdot (\spacegrad \phi)
- \frac{m^2}{2} \phi^2 - V(\phi).
\end{aligned}
\end{equation}
Had we translated by \( -a^\mu \) we'd have a positive definite tensor instead.
%%\section{Problems.}
%%
%%\makeproblem{Adding a total derivative to the Lagrangian}{problem:qftLecture7:560}{
%%Show that adding a total derivative to the Lagrangian density leaves the equations of motion unchanged.
%%} % problem
%%
%%\makeanswer{problem:qftLecture7:560}{
%%Given
%%\begin{equation}\label{eqn:qftLecture7:620}
%%\LL' = \LL + \partial_\mu a^\mu
%%\end{equation}
%%} % answer
%}
%\EndNoBibArticle