-
Notifications
You must be signed in to change notification settings - Fork 0
/
qftLukeProblemSet1Problem2.tex
228 lines (215 loc) · 7.32 KB
/
qftLukeProblemSet1Problem2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
%
% Copyright © 2015 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
\makeoproblem{Coherent states.}
{qft:LukeProblemSet1:2}
{2015 ps1.2}
{
In a theory of a single harmonic oscillator, define the coherent state \( \ket{ z } \) by
\begin{equation}\label{eqn:LukeProblemSet1Problem2:20}
\ket{z} = N e^{z a^\dagger} \ket{0},
\end{equation}
where \( z \) is a complex number and \( N \) is a real positive constant, chosen such that \( \braket{ z}{z} = 1\).
Coherent
states of the SHO are interesting because they smoothly interpolate between the classical and quantum
worlds: for large z they become indistinguishable from classical oscillators. (Similarly, coherent states
of photons correspond to electromagnetic waves in the limit of large numbers of photons). They also
give you good practice at manipulating creation and annihilation operators.
As usual, \( H = \omega (p^2 +q^2 )/2 \) and the raising and lowering operators \( a \) and \( a^\dagger \)are defined as \( a = (q + i p)/\sqrt{2} \), \( a^\dagger = (q - i p)/\sqrt{2}\),
where the usual momentum \( P \) and position \( X \) are \( P = \sqrt{ \mu \omega } p \), \( X = q/\sqrt{\mu \omega} \).
\makesubproblem{}{qft:LukeProblemSet1:2a}
Find N.
\makesubproblem{}{qft:LukeProblemSet1:2b}
Compute \( \braket{z'}{z} \), and \( \bra{ z } H \ket{z} \).
\makesubproblem{}{qft:LukeProblemSet1:2c}
Show that \( \ket{z} \) is an eigenstate of the annihilation operator \( a \) and find its eigenvalue. (Don't be disturbed by finding non-orthogonal eigenstates with complex eigenvalues; \( a \) is not a Hermitian
operator.)
\makesubproblem{}{qft:LukeProblemSet1:2d}
The statement that \( \ket{ z } \) is an eigenstate of a with well-known eigenvalue is, in the \(q\)-representation, a first-order differential equation for \( \braket{q}{z} \), the position-space wave-function of \( \ket{z} \). Solve this equation and find and sketch the wave-function. (Don't bother with normalization factors here).
\makesubproblem{}{qft:LukeProblemSet1:2e}
Consider the time evolution of the system (work in the Heisenberg representation). Show that for
real \( z \) (this just sets the initial conditions) the expectation values of the position and momentum
of the coherent state satisfy
\begin{equation}\label{eqn:LukeProblemSet1Problem2:40}
\bra{z} X \ket{z} = \sqrt{\frac{2}{\mu\omega}} z \cos\omega t
\end{equation}
\begin{equation}\label{eqn:LukeProblemSet1Problem2:60}
\bra{z} P \ket{z} = -\sqrt{2 \mu\omega} z \sin\omega t.
\end{equation}
By contrast, what are the expectation values of \( X \) and \( P \) for an oscillator in any state of definite excitation number \( n \)? Using a sketch, describe the behavior of the wavepacket as a function of
time.
} % makeproblem
\makeanswer{qft:LukeProblemSet1:2}{
\withproblemsetsParagraph{
\makeSubAnswer{}{qft:LukeProblemSet1:2a}
Expanding this definition of \( \ket{z} \) in power series
\begin{equation}\label{eqn:qftProblemSet1Problem2:80}
\ket{z} = N \sum_{k= 0}^\infty \inv{k!} \lr{ z a^\dagger }^k \ket{k},
\end{equation}
but
\begin{equation}\label{eqn:qftProblemSet1Problem2:100}
\begin{aligned}
a^\dagger \ket{0} &= \sqrt{1} \ket{1} \\
(a^\dagger)^2 \ket{0} &= \sqrt{2 \times 1} \ket{2} \\
(a^\dagger)^3 \ket{0} &= \sqrt{3 \times 2 \times 1} \ket{3},
\end{aligned}
\end{equation}
or
\begin{equation}\label{eqn:qftProblemSet1Problem2:120}
(a^\dagger)^k = \sqrt{k!} \ket{k}.
\end{equation}
This gives
\begin{equation}\label{eqn:qftProblemSet1Problem2:140}
\ket{z} = N^2 \sum_{k= 0}^\infty \inv{\sqrt{k!}} z^k \ket{k},
\end{equation}
%
from which the braket can be computed
\begin{equation}\label{eqn:qftProblemSet1Problem2:160}
\begin{aligned}
1 &= \braket{z}{z}
\\&= N^2 \sum_{k,m = 0}^\infty \inv{\sqrt{k!}} (z^\conj)^k \bra{k} \inv{\sqrt{m!}} z^m \ket{m}
\\&= N^2 \sum_{k = 0}^\infty \inv{k!} (z^\conj z)^k
\\&= N^2 e^{\Abs{z}^2}.
\end{aligned}
\end{equation}
This gives
\boxedEquation{eqn:qftProblemSet1Problem2:180}{
N = e^{-\Abs{z}^2/2}.
}
\makeSubAnswer{}{qft:LukeProblemSet1:2c}
\begin{equation}\label{eqn:qftProblemSet1Problem2:260}
\begin{aligned}
a \ket{z}
&=
a N
\sum_{k = 0}^\infty \inv{\sqrt{k!}} z^k \ket{k}
\\&=
N
\sum_{k = 1}^\infty \inv{\sqrt{k!}} z^k a \ket{k}
\\&=
N
\sum_{k = 1}^\infty \inv{\sqrt{k!}} z^k \sqrt{k} \ket{k-1}
\\&=
z N
\sum_{k = 1}^\infty \inv{\sqrt{(k-1)!}} z^{k-1} \ket{k-1}
\\&=
z \ket{z}
\end{aligned}
\end{equation}
\makeSubAnswer{}{qft:LukeProblemSet1:2b}
\begin{equation}\label{eqn:qftProblemSet1Problem2:200}
\begin{aligned}
\braket{z}{z'}
&=
e^{-\Abs{z}^2/2 - \Abs{z'}^2/2 }
\sum_{k,m = 0}^\infty \inv{\sqrt{k!}} (z^\conj)^k \bra{k} \inv{\sqrt{m!}} {z'}^m \ket{m} \\
&=
\exp\lr{
-\Abs{z}^2/2 - \Abs{z'}^2/2 + z^\conj z
}.
\end{aligned}
\end{equation}
We also want to put the Hamiltonian into its number operator form by factoring it
\begin{equation}\label{eqn:qftProblemSet1Problem2:220}
\begin{aligned}
H
&= \omega\lr{ p^2 + q^2 }/2 \\
&= \omega\lr{ \inv{2} \lr{ q - i p } \lr{ q + i p } - i \antisymmetric{q}{p}/2 } \\
&= \omega\lr{ a^\dagger a + \inv{2} }.
\end{aligned}
\end{equation}
Having found that \( a \ket{z} = z \ket{z} \), we also have
\begin{equation}\label{eqn:qftProblemSet1Problem2:280}
\begin{aligned}
\bra{z} a^\dagger
&=
\lr{ a \ket{z} }^\dagger
\\&=
\lr{ z \ket{z} }^\dagger
\\&=
\bra{z} z^\conj,
\end{aligned}
\end{equation}
so
\begin{equation}\label{eqn:qftProblemSet1Problem2:240}
\begin{aligned}
\bra{z} H \ket{z}
&=
\omega
\bra{z} a^\dagger a + \inv{2} \ket{z}
\\&=
\omega
\lr{ \Abs{z}^2 + \inv{2} }.
\end{aligned}
\end{equation}
\makeSubAnswer{}{qft:LukeProblemSet1:2d}
\begin{equation}\label{eqn:qftProblemSet1Problem2:300}
\begin{aligned}
\bra{q} a \ket{z}
&=
\inv{\sqrt{2}} \bra{q} q + i p \ket{z}
\\&=
\inv{\sqrt{2}} \lr{ q + \PD{q}{} } \braket{q}{z},
\end{aligned}
\end{equation}
with \( \psi(q) = \braket{q}{z} \), this is
\begin{equation}\label{eqn:qftProblemSet1Problem2:320}
\lr{ z - \frac{q}{\sqrt{2}} } \psi = \inv{\sqrt{2}} \PD{q}{\psi},
\end{equation}
which separates into
\begin{equation}\label{eqn:qftProblemSet1Problem2:340}
\lr{ \sqrt{2} z - q} dq = \frac{d\psi}{\psi}.
\end{equation}
The solution is of the form
\begin{equation}\label{eqn:qftProblemSet1Problem2:360}
\begin{aligned}
\psi
&\propto \exp\lr{ \sqrt{2} z q - q^2/2 } \\
&= \exp\lr{ -(q^2 - 2 \sqrt{2} z q )/2 } \\
&\propto \exp\lr{ -(q - \sqrt{2} z )^2/2 }.
\end{aligned}
\end{equation}
SKETCH: This is a Gaussian, and when \( z \) is real is centered at \( \sqrt{2} z \).
\makeSubAnswer{}{qft:LukeProblemSet1:2e}
Noting that \( 2 q = \sqrt{2} \lr{ a + a^\dagger } \), and \( 2 i p = \sqrt{2}\lr{ a - a^\dagger } \)
\begin{equation}\label{eqn:qftProblemSet1Problem2:380}
\begin{aligned}
\bra{z} X \ket{z}
&=
\inv{\sqrt{\mu \omega}}
\bra{z} q \ket{z}
\\&=
\inv{\sqrt{2 \mu \omega}}
\bra{z}
a e^{-i\omega t} + a^\dagger e^{i \omega t}
\ket{z}
\\&=
\inv{\sqrt{2 \mu \omega}} \lr{
z e^{-i\omega t} + z^\conj e^{i \omega t}
}
\\&=
\sqrt{\frac{2}{\mu \omega}} z \cos(\omega t).
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:qftProblemSet1Problem2:400}
\begin{aligned}
\bra{z} P \ket{z}
&=
\sqrt{\mu \omega}
\bra{z} p \ket{z}
\\&=
i\frac{\sqrt{\mu \omega}}{2}
\bra{z}
a^\dagger e^{i\omega t} - a e^{-i \omega t}
\ket{z}
\\&=
i\frac{\sqrt{\mu \omega}}{2} z
\lr{ e^{i\omega t} - e^{-i \omega t}}
\\&=
-\sqrt{2 \mu \omega} z \sin(\omega t).
\end{aligned}
\end{equation}
SKETCH: particle expectation values trace an ellipse in phase space.
}
}