-
Notifications
You must be signed in to change notification settings - Fork 0
/
qftLukeProblemSet1Problem5.tex
136 lines (133 loc) · 3.73 KB
/
qftLukeProblemSet1Problem5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
%
% Copyright © 2015 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
\makeoproblem{Field Lagrangian with a divergence.}
{qft:LukeProblemSet1:5}
{2015 ps1.5}
{
%\makesubproblem{}{qft:LukeProblemSet1:5a}
Show that replacing the Lagrange density \( L = L(\phi_a, \partial_\alpha \phi_a ) \) by
\begin{equation}\label{eqn:LukeProblemSet1Problem5:20}
L' = L + \partial_\mu \wedge^\mu(x),
\end{equation}
%
where \( \wedge^\mu(x), \mu = 0,\cdots,3\), are arbitrary functions of the fields \( \phi_a(x) \), does not alter the equations of motion. Thus, when constructing the most general Lagrange density for a field, we do not have to include terms which are total derivatives. This will simplify life.
} % makeproblem
\makeanswer{qft:LukeProblemSet1:5}{
\withproblemsetsParagraph{
%%I had to start with re-deriving the field equations for a Lagrange density since I'd forgotten what they were. If a field \( \phi \) is varied \( \phi' = \phi + \overbar{\phi} \), with the zero variation on the boundaries of the action volume element, we have to first order
%%
%%\begin{equation}\label{eqn:LukeProblemSet1Problem5:40}
%%\LL'
%%= \LL( \phi + \overbar{\phi}, \partial_\alpha ( \phi + \overbar{\phi}) )
%%=
%%\LL( \phi )
%%+
%%\PD{\overbar{\phi}}{\LL} \overbar{\phi}
%%+
%%\PD{\partial_\beta \overbar{\phi}}{\LL} \partial_\beta \overbar{\phi}.
%%\end{equation}
%%
%%The variation of the action is
%%
%%\begin{equation}\label{eqn:LukeProblemSet1Problem5:60}
%%\delta S
%%=
%%\int dV \lr{
%%\PD{\overbar{\phi}}{\LL} \overbar{\phi}
%%+
%%\PD{\partial_\beta \overbar{\phi}}{\LL} \partial_\beta \overbar{\phi}
%%}
%%=
%%\int dV \lr{
%%\PD{\overbar{\phi}}{\LL} \overbar{\phi}
%%+
%%\partial_\beta \lr{
%%\overbar{\phi}
%%\PD{\partial_\beta \overbar{\phi}}{\LL}
%%}
%%-
%%\overbar{\phi}
%%\partial_\beta \lr{
%%\PD{\partial_\beta \overbar{\phi}}{\LL}
%%}
%%}
%%=
%%\int d\Omega
%%\evalbar{
%%\overbar{\phi}
%%\PD{\partial_\beta \overbar{\phi}}{\LL}
%%}
%%{
%%\Delta x^\beta
%%}
%%+
%%\int dV
%%\overbar{\phi}
%%\lr{
%%\PD{\overbar{\phi}}{\LL}
%%-
%%\partial_\beta \lr{
%%\PD{\partial_\beta \overbar{\phi}}{\LL}
%%}
%%}
%%\end{equation}
%%
%%The first integral vanishes given the boundary condition assumptions, and the second provides the equations for the field. Generalizing that to multiple fields \( \phi_a \), and evaluating the derivatives at \( \overbar{\phi}_a = \phi_a \) we have
%%
%%\boxedEquation{eqn:qftProblemSet1Problem5:80}{
%%\PD{\phi_a}{\LL}
%%=
%%\partial_\beta \lr{
%%\PD{\partial_\beta \phi_a}{\LL}
%%}.
%%}
%%
%%Now we can tackle the problem.
%%XX
Consider first just two fields, say \( \phi \) and \( \psi\), and consider
\begin{equation}\label{eqn:qftProblemSet1Problem5:100}
\begin{aligned}
\partial_\beta
\lr{
\PD{\partial_\beta \phi}{} \partial_\mu \wedge^\mu
}
&=
\partial_\beta
\lr{
\PD{\partial_\beta \phi}{}
\lr{
\PD{\phi}{ \wedge^\mu } \PD{x^\mu}{ \phi}
+
\PD{\psi}{ \wedge^\mu } \PD{x^\mu}{ \psi}
}
}
\\&=
\partial_\beta \PD{\phi}{ \wedge^\beta }
\\&=
\PD{\phi}{ \partial_\beta \wedge^\beta }.
\end{aligned}
\end{equation}
We see that the divergence \( \partial_\mu \wedge^\mu \) also satisfies the field Euler-Lagrange equations for the field \( \phi \). This will clearly be the case for multiple fields. Making that explicit, we can generalize the above slightly
\begin{equation}\label{eqn:qftProblemSet1Problem5:120}
\begin{aligned}
\partial_\beta
\lr{
\PD{\partial_\beta \phi_a}{} \partial_\mu \wedge^\mu
}
&=
\partial_\beta
\lr{
\PD{\partial_\beta \phi_a}{}
\PD{\phi_b}{ \wedge^\mu } \PD{x^\mu}{ \phi_b }
}
\\&=
\partial_\beta \PD{\phi_b}{ \wedge^\mu } \delta_{b a} {\delta^\beta}_\mu
\\&=
\PD{\phi_a}{ \partial_\beta \wedge^\beta }.
\end{aligned}
\end{equation}
%\makeSubAnswer{}{qft:LukeProblemSet1:5a}
}
}