-
Notifications
You must be signed in to change notification settings - Fork 1
/
pretrain.py
150 lines (114 loc) · 5.79 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import argparse
import os
import sys
import ruamel_yaml as yaml
import time
import datetime
import json
from pathlib import Path
import torch
import torch.distributed as dist
from models.model_pretrain import MUMC_Pretrain
from models.model import load_checkpoint
import utils
from dataset import create_dataset, create_sampler, create_loader
def train(model, data_loader, optimizer, epoch, device, config):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss_mlm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
if args.distributed:
data_loader.sampler.set_epoch(epoch)
for i, (image, text) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
if epoch == 0: # 预热学习率
utils.warmup_lr_schedule(optimizer, i, config['warmup_steps'], config['warmup_lr'], config['init_lr'])
optimizer.zero_grad()
image = image.to(device, non_blocking=True)
# ramp up alpha in the first 2 epochs
alpha = config['alpha'] * min(1, (epoch * len(data_loader) + i) / (2 * len(data_loader)))
loss_mlm, loss_ita, loss_itm = model(image, text, alpha=alpha)
loss = loss_mlm + loss_ita + loss_itm
loss.backward()
optimizer.step()
metric_logger.update(loss_mlm=loss_mlm.item())
metric_logger.update(loss_ita=loss_ita.item())
metric_logger.update(loss_itm=loss_itm.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.6f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
# fix the seed for reproducibility
utils.set_seed(args.seed + utils.get_rank())
print("Creating dataset")
datasets = [create_dataset('pretrain', config)]
print('number of training samples: %d' % len(datasets[0]))
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [True], num_tasks, global_rank)
else:
samplers = [None]
data_loader = create_loader(datasets, samplers, batch_size=[config['batch_size']], num_workers=[4],
is_trains=[True], collate_fns=[None])[0]
''' Model '''
print("Creating model")
model = MUMC_Pretrain(config=config).to(device)
optimizer = torch.optim.AdamW(params=model.parameters(), lr=config['init_lr'], weight_decay=config['weight_decay'])
start_epoch = 0
if args.checkpoint:
model, msg = load_checkpoint(model, args.checkpoint)
print('missing_keys = {}, unexpected_keys = {}'.format(msg.missing_keys, msg.unexpected_keys))
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
print("Start training")
start_time = time.time()
for epoch in range(start_epoch, config['max_epoch']):
utils.step_lr_schedule(optimizer, epoch, config['init_lr'], config['min_lr'], config['lr_decay_rate'])
train_stats = train(model, data_loader, optimizer, epoch, device, config)
if utils.is_main_process():
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, 'epoch': epoch}
save_obj = {
'model': model_without_ddp.state_dict(),
# 'optimizer': optimizer.state_dict(),
# 'config': config,
# 'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, 'med_pretrain_%02d.pth' % epoch))
with open(os.path.join(args.output_dir, "loss.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
'''distributed Training'''
if args.distributed:
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/Pretrain.yaml')
parser.add_argument('--checkpoint', default='/mnt/sda/lpf/weights/pre_training/albef/ALBEF.pth') #
parser.add_argument('--output_dir', default='/mnt/sda/lpf/weights/output/V2/pretrain')
parser.add_argument('--device', default='cuda', help='device id (i.e. 0 or 0,1 or cpu)')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=False, type=bool)
args = parser.parse_args()
config = yaml.safe_load(open(args.config, 'r'))
args.output_dir = os.path.join(args.output_dir, datetime.datetime.strftime(datetime.datetime.now(), '%Y-%m-%d_%H-%M'))
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
# set log, set console print info to file
sys.stdout = utils.Logger(filename=os.path.join(args.output_dir, "log.txt"), stream=sys.stdout)
print("config: ", config)
print("args: ", args)
main(args, config)