-
Notifications
You must be signed in to change notification settings - Fork 9
/
tfw_Conv3dReluPool3dDrop.m
60 lines (50 loc) · 1.41 KB
/
tfw_Conv3dReluPool3dDrop.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
classdef tfw_Conv3dReluPool3dDrop < tfw_i
%tfw_Conv3dReluPool3dDrop Conv3d + Relu + MaxPooling3d + Dropout
% Detailed explanation goes here
properties
end
methods
function ob = tfw_Conv3dReluPool3dDrop()
%%% internal connection
% 1: conv, param
ob.tfs{1} = tf_conv3d();
ob.tfs{1}.p(1).a = randn(0, 0, 'single'); % kernel
ob.tfs{1}.p(2).a = zeros(0, 0, 'single'); % bias
% 2: relu
ob.tfs{2} = tf_relu();
ob.tfs{2}.i = ob.tfs{1}.o;
% 3: pool
ob.tfs{3} = tf_maxpool3d();
ob.tfs{3}.i = ob.tfs{2}.o;
% 3: dropout
ob.tfs{4} = tf_dropout();
ob.tfs{4}.i = ob.tfs{3}.o;
%%% input/output data
ob.i = n_data();
ob.o = n_data();
%%% set the parameters
ob.p = dag_util.collect_params( ob.tfs );
end % tfw_Conv3dReluPool3dDrop
function ob = fprop(ob)
% outer -> inner
ob.tfs{1}.i.a = ob.i.a;
% fprop all
for i = 1 : numel( ob.tfs )
ob.tfs{i} = fprop(ob.tfs{i});
ob.ab.sync();
end
% inner -> outer
ob.o.a = ob.tfs{end}.o.a;
end % fprop
function ob = bprop(ob)
% outer -> inner
ob.tfs{end}.o.d = ob.o.d;
% bprop all
for i = numel(ob.tfs) : -1 : 1
ob.tfs{i} = bprop(ob.tfs{i});
ob.ab.sync();
end
ob.i.d = ob.tfs{1}.i.d;
end % bprop
end
end