-
Notifications
You must be signed in to change notification settings - Fork 73
/
sample_for_pdb.py
227 lines (201 loc) · 9.11 KB
/
sample_for_pdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import argparse
import warnings
from easydict import EasyDict
from Bio import BiopythonWarning
from Bio.PDB.PDBParser import PDBParser
from Bio.PDB.Selection import unfold_entities
from rdkit import Chem
from utils.protein_ligand import PDBProtein
from sample import * # Import everything from `sample.py`
def pdb_to_pocket_data(pdb_path, center, bbox_size):
center = torch.FloatTensor(center)
warnings.simplefilter('ignore', BiopythonWarning)
ptable = Chem.GetPeriodicTable()
parser = PDBParser()
model = parser.get_structure(None, pdb_path)[0]
protein_dict = EasyDict({
'element': [],
'pos': [],
'is_backbone': [],
'atom_to_aa_type': [],
})
for atom in unfold_entities(model, 'A'):
res = atom.get_parent()
resname = res.get_resname()
if resname == 'MSE': resname = 'MET'
if resname not in PDBProtein.AA_NAME_NUMBER: continue # Ignore water, heteros, and non-standard residues.
element_symb = atom.element.capitalize()
if element_symb == 'H': continue
x, y, z = atom.get_coord()
pos = torch.FloatTensor([x, y, z])
if (pos - center).abs().max() > (bbox_size / 2):
continue
protein_dict['element'].append( ptable.GetAtomicNumber(element_symb))
protein_dict['pos'].append(pos)
protein_dict['is_backbone'].append(atom.get_name() in ['N', 'CA', 'C', 'O'])
protein_dict['atom_to_aa_type'].append(PDBProtein.AA_NAME_NUMBER[resname])
if len(protein_dict['element']) == 0:
raise ValueError('No atoms found in the bounding box (center=%r, size=%f).' % (center, bbox_size))
protein_dict['element'] = torch.LongTensor(protein_dict['element'])
protein_dict['pos'] = torch.stack(protein_dict['pos'], dim=0)
protein_dict['is_backbone'] = torch.BoolTensor(protein_dict['is_backbone'])
protein_dict['atom_to_aa_type'] = torch.LongTensor(protein_dict['atom_to_aa_type'])
data = ProteinLigandData.from_protein_ligand_dicts(
protein_dict = protein_dict,
ligand_dict = {
'element': torch.empty([0,], dtype=torch.long),
'pos': torch.empty([0, 3], dtype=torch.float),
'atom_feature': torch.empty([0, 8], dtype=torch.float),
'bond_index': torch.empty([2, 0], dtype=torch.long),
'bond_type': torch.empty([0,], dtype=torch.long),
}
)
return data
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--pdb_path', type=str,
default='./example/4yhj.pdb')
parser.add_argument('--center', type=lambda s: list(map(float, s.split(','))),
default=[32.0, 28.0, 36.0],
help='Center of the pocket bounding box, in format x,y,z')
parser.add_argument('--bbox_size', type=float, default=23.0,
help='Pocket bounding box size')
parser.add_argument('--config', type=str, default='./configs/sample_for_pdb.yml')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--outdir', type=str, default='./outputs')
args = parser.parse_args()
# Load configs
config = load_config(args.config)
config_name = os.path.basename(args.config)[:os.path.basename(args.config).rfind('.')]
seed_all(config.sample.seed)
# Logging
log_dir = get_new_log_dir(args.outdir, prefix='%s_%s' % (
config_name,
os.path.basename(args.pdb_path),
))
logger = get_logger('sample', log_dir)
logger.info(args)
logger.info(config)
shutil.copyfile(args.config, os.path.join(log_dir, os.path.basename(args.config)))
shutil.copyfile(args.pdb_path, os.path.join(log_dir, os.path.basename(args.pdb_path)))
# # Transform
logger.info('Loading data...')
protein_featurizer = FeaturizeProteinAtom()
ligand_featurizer = FeaturizeLigandAtom()
contrastive_sampler = ContrastiveSample(num_real=0, num_fake=0)
masking = LigandMaskAll()
transform = Compose([
RefineData(),
LigandCountNeighbors(),
protein_featurizer,
ligand_featurizer,
masking,
])
# # Data
data = pdb_to_pocket_data(args.pdb_path, args.center, args.bbox_size)
data = transform(data)
# # Model (Main)
logger.info('Loading main model...')
ckpt = torch.load(config.model.checkpoint, map_location=args.device)
model = MaskFillModelVN(
ckpt['config'].model,
num_classes = contrastive_sampler.num_elements,
protein_atom_feature_dim = protein_featurizer.feature_dim,
ligand_atom_feature_dim = ligand_featurizer.feature_dim,
num_bond_types = 3,
).to(args.device)
model.load_state_dict(ckpt['model'])
# Sampling
# The algorithm is the same as the one `sample.py`.
pool = EasyDict({
'queue': [],
'failed': [],
'finished': [],
'duplicate': [],
'smiles': set(),
})
# # Sample the first atoms
logger.info('Initialization')
pbar = tqdm(total=config.sample.beam_size, desc='InitSample')
atom_composer = AtomComposer(protein_featurizer.feature_dim, ligand_featurizer.feature_dim, model.config.encoder.knn)
data = transform_data(data, atom_composer)
init_data_list = get_init(data.to(args.device), # sample the initial atoms
model = model,
transform=atom_composer,
threshold=config.sample.threshold
)
pool.queue = init_data_list
if len(pool.queue) > config.sample.beam_size:
pool.queue = init_data_list[:config.sample.beam_size]
pbar.update(config.sample.beam_size)
else:
pbar.update(len(pool.queue))
pbar.close()
print_pool_status(pool, logger)
logger.info('Saving samples...')
torch.save(pool, os.path.join(log_dir, 'samples_init.pt'))
# # Sampling loop
logger.info('Start sampling')
global_step = 0
try:
while len(pool.finished) < config.sample.num_samples:
global_step += 1
if global_step > config.sample.max_steps:
break
queue_size = len(pool.queue)
# # sample candidate new mols from each parent mol
queue_tmp = []
queue_weight = []
for data in tqdm(pool.queue):
nexts = []
data_next_list = get_next(
data.to(args.device),
model = model,
transform = atom_composer,
threshold = config.sample.threshold
)
for data_next in data_next_list:
if data_next.status == STATUS_FINISHED:
try:
rdmol = reconstruct_from_generated_with_edges(data_next)
data_next.rdmol = rdmol
mol = Chem.MolFromSmiles(Chem.MolToSmiles(rdmol))
smiles = Chem.MolToSmiles(mol)
data_next.smiles = smiles
if smiles in pool.smiles:
logger.warning('Duplicate molecule: %s' % smiles)
pool.duplicate.append(data_next)
elif '.' in smiles:
logger.warning('Failed molecule: %s' % smiles)
pool.failed.append(data_next)
else: # Pass checks
logger.info('Success: %s' % smiles)
pool.finished.append(data_next)
pool.smiles.add(smiles)
except MolReconsError:
logger.warning('Ignoring, because reconstruction error encountered.')
pool.failed.append(data_next)
elif data_next.status == STATUS_RUNNING:
nexts.append(data_next)
queue_tmp += nexts
if len(nexts) > 0:
queue_weight += [1. / len(nexts)] * len(nexts)
# # random choose mols from candidates
prob = logp_to_rank_prob(np.array([p.average_logp[2:] for p in queue_tmp]), queue_weight) # (logp_focal, logpdf_pos), logp_element, logp_hasatom, logp_bond
n_tmp = len(queue_tmp)
next_idx = np.random.choice(np.arange(n_tmp), p=prob, size=min(config.sample.beam_size, n_tmp), replace=False)
pool.queue = [queue_tmp[idx] for idx in next_idx]
print_pool_status(pool, logger)
torch.save(pool, os.path.join(log_dir, 'samples_%d.pt' % global_step))
except KeyboardInterrupt:
logger.info('Terminated. Generated molecules will be saved.')
# # Save sdf mols
sdf_dir = os.path.join(log_dir, 'SDF')
os.makedirs(sdf_dir)
with open(os.path.join(log_dir, 'SMILES.txt'), 'a') as smiles_f:
for i, data_finished in enumerate(pool['finished']):
smiles_f.write(data_finished.smiles + '\n')
rdmol = data_finished.rdmol
Chem.MolToMolFile(rdmol, os.path.join(sdf_dir, '%d.sdf' % i))
torch.save(pool, os.path.join(log_dir, 'samples_all.pt'))